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ABSTRACT 

Recently, the study of quantized control systems has attracted increasing attention 

by researchers, due to its theoretical and practical importance in hybrid control systems, 

control under communication/ computation constraints, etc. This thesis is devoted to the 

problem of stabilizing nonlinear affine systems with quantized feedback. We show that, 

for a single-input nonlinear affine continuous-time system, a stabilizing quantizer can be 

constructed based on a control Lyapunov function, and a robustly stabilizing quantizer 

can be constructed based on a robust control Lyapunov function. We also characterize 

the coarsest quantizer under certain conditions. The quantized control scheme provides 

understanding to the problem of how much interaction between the controller and the 

system dynamics is needed for stabilization, and is furthermore useful for studying the 

interaction between control and information. 
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1 INTRODUCTION 

This thesis focuses on studying the quantized stabilization of nonlinear affine sys-

tems. This work is an extension to previous research on quantized stabilization of linear 

systems in [16, 13]. We show that, for a single-input nonlinear affine continuous-time 

system, a stabilizing quantizer can be constructed based on a control Lyapunov function 

(CLF), and a robustly stabilizing quantizer can be constructed based on a robust control 

Lyapunov function (RCLF). We also characterize the coarsest quantizer under certain 

conditions. This research fits into the framework of investigating the complexity of the 

interaction between controllers and plant dynamics, and is useful for studying control 

systems with communication constraints and computational complexity. 

This introduction is divided into three sections. Section 1.1 introduces briefly the 

notions relevant to quantized control. Section 1.2 describes the motivation for studying 

quantized control systems. Section 1.3 provides a summary of the chapters that follow. 

1.1 Preliminaries of Quantized Control 

In this section we present a brief introduction to quantized control. This helps the 

reader to intuitively understand quantized control before we give the precise definition. 

A quantizer (or a quantized controller) is a controller that maps the states of a 

system into piecewise constant control inputs which take values in an at most countable 

set [8, 16]. In other words, in a quantized control system, the controller generates the 

control inputs based on the quantized information (incomplete knowledge) of the system 

states. The quantizer induces a partition of the state-space into an at most countable 

number of cells, each of which is associated with one control value (see Figure 1.1 for 
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an example of a memoryless time-invariant quantizer). If, for example, the state of the 

system is in cell 0 1, then the associated value u1 is employed as the control input. Each 

ui is called a control primitive. 

Figure 1.1 Illustration of a quantizer. The state-space is partitioned into 
cells, and cell ni is assigned a fixed control value ui. 

The quantizer has certain nice features. It only needs to transmit/process infor-

mation intermittently and with finite precision, in contrast to a traditional controller 

which must transmit/process information continuously and with infinite precision. As a 

consequence, the interaction between the controller and the plant exists only at discrete 

instants of time, and the interactions involve less information. Although less interaction 

is used during the control process, the quantizer may be designed to achieve stability 

or desired performance of the closed-loop system (see e.g. [16]). Therefore, quantized 

control is helpful to address some control problems, such as control under communica-

tion/ computation constraints. 

1.2 Motivation 

Recently the problem concerning quantized control systems has attracted increasing 

attention by researchers; see [57, 44, 51, 8, 16] and references therein. The motivation for 

considering quantization in control systems comes from the observation that for many 

control systems, quantization is inevitable or useful. 

In a continuous-variable control system, if a digital controller is used, or if the data 

transmission between the plant and the controller is constrained by digital communica-
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tion channels, then quantization is inevitable. In this scenario, the effects of quantization 

are usually seen as undesirable, either as noise or state uncertainty, and must be reduced 

by often complex controllers. 

However, another approach has a fundamentally different view, which could be theo-

retically and practically more attractive. Instead of viewing quantization as undesirable, 

in this scenario one intensionally introduces quantization and make use of it to address 

the problems of 

1. Control under communication/ computation constraints. As the control systems 

grow in size and in complexity and become distributed, a cost associated with com-

munication/ computation needs to be taken into account during the control process, 

whereas such a cost is neglected in traditional control theory. The solutions to this 

problem can be used to efficiently allocate communication/computation resources, 

or to effectively reduce attention cost [7], communication effort [24, 57, 10], and 

computational complexity [20]. 

2. The systematic way to design hybrid systems. Many hybrid phenomena (inter-

action between continuous dynamics and logic) are effects of information quanti-

zation. Therefore, quantization is considered to be useful for deriving systematic 

design methods for hybrid systems [13, 16]. 

3. The design of hierarchical systems. In hierarchical systems, it is evident that 

higher levels in the hierarchy manipulate only quantized information about the 

dynamics at lower levels [5]. Introducing quantization to a system may result in a 

hierarchical structure and is useful for designing a hierarchical system. 

So far we have seen that quantization is useful in addressing several control problems. 

However, in this thesis we do not focus on these problems. Instead, we concentrate on 

a basic question concerning quantization: how can a system be stabilized by means 

of quantized control? It is obvious that the answer to this question has fundamental 

significance to the above problems. This thesis provides an answer to the question for 

nonlinear affine systems, whenever an RCLF or CLF is available. 
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1.3 Summary of the Thesis 

This thesis is organized as follows. 

Chapter 2 In this chapter we review the relevant existing literature. 

Chapter 3 In this chapter we introduce the mathematical preliminaries of quantization 

and the Lyapunov-based design approach. The notions of stability and robustness 

suitable for a quantized continuous-time control system are also described. 

Chapter 4 In this chapter we define the main problems we want to solve, and briefly 

present the main results. 

Chapter 5 In this chapter we construct quantization for single-input nonlinear affine 

systems based on the availability of an RCLF. Under certain conditions the coars-

est quantizers are given. Finite quantizers are also obtained. We further show that 

several important classes of nonlinear affine systems, such as linear systems, feed-

back linearizable systems, locally linearizable systems, etc., fall into this category, 

and their special features can be used to derive more specific quantization results. 

Chapter 6 In this chapter we show that, for any nonlinear affine system with a CLF 

available, the system can be stabilized by a hierarchical quantizer. Finite quantiz-

ers are also obtained. 

Chapter 7 In this chapter we discuss briefly some interesting but unsolved topics rel-

evant to the results we obtained, such as chattering-free quantizers and attention 

cost. 

Chapter 8 In this chapter we present several simulation results using the quantization 

theory we derived in this thesis. 

Chapter 9 In this chapter we conclude the thesis and present some interesting questions 

that will be the subjects of our future research work. 
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In summary, we present a strategy and results for quantized stabilization of nonlinear 

affine systems. The original work is concentrated in Chapters 4 through 8 and in the 

sections concerning semi-logarithmic quantizers (SLQ) and RCLF's in Chapter 3. The 

results obtained in this thesis may be helpful to investigate several important control 

problems, such as the design of hybrid systems, the interaction between control and 

information, etc. 
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2 LITERATURE REVIEW 

This thesis is concerned with quantized stabilization of nonlinear affine systems. 

Relevant work can be classified into the following categories: 1) quantized stabiliza-

tion and performance; 2) quantized stabilization and performance under communica-

tion/computation constraints; and 3) the discrete dynamical aspects of quantized sys-

tems. 

2.1 Quantized Control Systems: Stabilization and Performance 

Problems 

The work in this category lays a foundation for the problems of achieving desired 

stability or performance under communication/computation constraints, which are de-

scribed in Section 2.2. 

2.1.1 Uniform Quantization 

[9] investigates the problem of stabilizing an unstable multi-input discrete-time lin-

ear system by means of quantized feedback. A uniform quantization with countable 

infinite rectilinear cells is considered, since it is widely used in information theory and 

in analog-to-digital converters. It is shown that the closed-loop behavior resulting from 

quantization of measurement is quite different (and more complicated) than that result-

ing from approximation of measurement. In such a quantized control system, asymptotic 

stabilization cannot be achieved, since higher and higher resolution (smaller size of quan-

tization cells) is needed when the state is closer and closer to the origin. 
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The quantization used in [9] has drawbacks since it lacks resolution where resolution 

is needed, and it has fine resolution where such resolution is not needed. [8] fixes this 

problem by assuming it is possible to change the resolution (the sensitivity) of a uniform 

quantizer with only a finite number of cells. The evolution of the sensitivity of the 

quantizer is described by a dynamic equation, resulting in quantized dynamic feedback 

(not memoryless). Both continuous-time and discrete-time multi-input linear systems 

are examined, and global asymptotic stabilization by quantized feedback is achieved. 

The approach in [8] is extended in [33] to nonlinear systems under the condition 

of input-to-state stability (ISS). This is further extended in preprints [34, 35] to allow 

arbitrary shape of cells. 

2.1.2 Logarithmic Quantization 

A natural theoretical question regarding quantization is: What is the coarsest al-

lowable quantization? Using the Lyapunov-based approach, [16] shows that the coarsest 

quadratically stabilizing quantizer for a single-input discrete-time linear system follows 

a logarithmic law. [16] also obtains the coarsest space-time quadratically stabilizing 

quantizer for a single-input continuous-time linear system under uniform sampling. Fur-

thermore, it shows that the finite truncation of the logarithmic quantizer (LQ) with an 

infinite number of cells guarantees practical stability of the closed-loop system. 

[13] investigates bounded energy gain performance of quantized single-input linear 

systems. An approach based on 1{= CLF is introduced, which is an extension of the 

approach in [16]. The coarsest quantizer, again, is found to be logarithmic. 

[15] provides a lower bound of the minimum density of quadratically stabilizing quan-

tizers for a two-input discrete-time linear system. This paper also shows that the optimal 

quantizer is radially logarithmic. 

Following the approach in [15], [14] conducts extensive investigation on quantized 

two-input discrete-time linear systems. It provides more elaborate and more informative 

lower bounds than those in [15]. Surprisingly, [14] shows that a two-input system has 

quantization density no less than a single-input system, which contradicts our intuition 
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that two inputs can do better than one. 

The results listed so far in this chapter may cause chattering for continuous-time 

systems. Mathematically, chattering is allowed by Filippov solutions [18], but it is 

harmful practically. To prevent chattering, [24] introduces a dwell-time constraint to an 

LQ. It shows that there is a way to design an LQ with a dwell-time that asymptotically 

stabilizes a continuous-time linear system. 

2.1.3 Other Work 

[17] provides a rather complete analysis of the quantized stabilization of a discrete-

time scalar (one-variable) linear system. An approach based on a possibly non-quadratic 

CLF is proposed, and a new lower bound on the number of cells is obtained. A loga-

rithmic connection between the number of cells and the convergence time is established. 

[2] reports the results on the reachable sets of quantized linear systems, as well as on 

a class of nonlinear systems, i.e., nonholonomic chained-form systems. See also [32, 23] 

for other work. 

2.2 Quantized Control Systems: Problems of Communication/ 

Computation Constraints 

In this category, the communication/computation effort, or more generally, attention 

cost, needed to stabilize a control system is considered. 

[57, 58] initiate a systematic research on control under communication constraints. 

The measurements are assumed to be coded and transmitted over a digital communica-

tion channel with finite capacity, which introduces quantization. The state estimation 

problem is explored in [57]. A weaker stability (called containability) of the closed-loop 

system using a coded feedback control law is studied in [58]. 

[7] investigates the attention cost for a control law. A control law with a lower cost 

needs less control effort; i.e., it is easier to implement. Quantized control (piecewise 

constant control) is regarded as easy to implement. An attention functional is proposed, 
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which, together with the performance functional, serves as the objective functional we 

need to minimize. The minimizing controller achieves a balance between the performance 

of the system and the difficulty involved in implementing the control. 

[36] investigates nonlinear feedback systems and the control effort of quantized feed-

back in a stochastic scenario. The attention cost is defined to be the mean number of 

switchings per unit time for a quantized control law. This paper provides an explicit 

formula of the attention cost and conditions under which a system can have a finite 

attention cost. 

[41, 42, 43] study the problem of state estimation via a finite capacity channel. [41] 

provides a coding-estimation scheme that generates an asymptotic mean-square error of 

zero under some conditions. [42, 43] provide the optimal and suboptimal coder-estimator 

structures. [44] considers communication-limited stabilization for a discrete-time linear 

system. It is shown that the necessary data-rate for stabilization depends only on the 

unstable poles. 

[10] also examines the state estimation problem. A recursive estimation algorithm is 

proposed. This algorithm is computationally non-expensive and easy to implement in 

real-time systems. 

[51, 52] perform an extensive research on the problem of control under communi-

cation constraints. The minimum data-rates needed for state estimation and feedback 

stabilization are studied, and they are shown to depend only on the unstable poles of the 

discrete-time linear system. A coding scheme for a channel with feedback is provided. 

[45, 46] reexamine the notion of channel capacity in situations where the commu-

nication channel is a part of a feedback loop. It is shown that Shannon capacity is 

insufficient. A concept called any-time capacity is introduced. 

[20, 19] intensionally introduce quantization to control systems to reduce the com-

putation effort. It is shown that the quantization of a highly nonlinear system with 

symmetry leads to a relatively simple control architecture based on a hybrid automaton, 

which is suitable for real-time application. 

See also [53, 54, 22] for other related work. 
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2.3 Quantized Control Systems: Problems of Discrete Dynam-

ical Aspects 

In this category, the hybrid features, especially the discrete (or symbolic, logical, 

qualitative) dynamical aspects of quantized control systems are stressed. 

[5, 6] investigate the interaction between discrete dynamics and continuous dynamics. 

Quantization results from this interaction. Relevant work includes [11, 12]. 

[38] considers the discrete-event representation of a quantized linear system. In such 

a system the output of the quantizer behaves like a discrete-event system. Sufficient 

conditions are given to ensure that the discrete-event behavior is deterministic. [37] 

deals with the diagnosis of a quantized system through its discrete-event representation. 

2.4 Summary 

In this chapter we have reviewed literature relevant to quantized control systems. 

The first category of the literature focuses on the problem of achieving stability or 

desired performance for a quantized control system without considering communica-

tion/ computation constraints explicitly. Our research work on quantized stabilization 

of nonlinear affine systems falls into this category, and is an extension to the existing 

work [16]. The second category includes research on achieving stability or desired per-

formance for a quantized control system with communication/ computation constraints. 

The third category investigates the discrete dynamical aspects of quantized systems. 
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3 MATHEMATICAL PRELIMINARIES 

In this chapter we present the mathematical preliminaries for quantized control sys-

tems. These preliminaries include: 1) the precise definitions of various quantizers and 

their properties; 2) the Lyapunov-based approach and the RCLF; and 3) the notions of 

stability and robustness suitable for a quantized continuous-time control system. 

In this thesis we mainly consider the single-input nonlinear affine continuous-time 

system 

x = J(x) + g(x)u; f(O) = 0 (3.1) 

where f and g are C1 functions, x E X ~ IR.n, X is the state-space, u E U ~ IR, and U 

is the admissible control set. 

3.1 Introduction to Quantized Control 

In this section we give the precise definitions of the quantizer, logarithmic quantizer, 

semi-logarithmic quantizer, and finite quantizer. Although special structures are im-

posed on the definitions of the quantizers (such as symmetry w.r.t. the origin, etc.), 

they do not lead to restriction; as we will see later that these structures arise naturally 

in the solutions of the problems considered in this thesis. The properties of quantizers 

are also discussed in this section. 

3.1.1 Definition of Quantizer 

A quantizer is a controller that maps the states of a system into piecewise constant 

control inputs which take values in an at most countable set. 
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Definition 3.1. A (memoryless, time-invariant} quantizer is a 4-tuple (q, S, O,U) con-

sisting of a map q : S --t U such that q(O) = 0 and for any i E Z, q(x) = ui if x E ni; 
a set S ~ X containing a neighborhood of the origin; a disjoint partition 0, = {Oi}~-oo 

of S; and a set of admissible control U = { ui E IR, i E Z}. Every O,i is called a cell; i is 

called the index of the cell. With a slight abuse of terminology, q is called the quantizer. 

When we say quantizer in this thesis, we always refer to a memoryless time-invariant 

quantizer unless otherwise specified. The quantizer induces a partition of the state-space 

into an at most countable number of cells. Each cell O,i is associated with a fixed control 

input Ui· U forms a set of control primitives. If, for example, the state of the system is 

in some cell ni, then ui is employed as the control input. See Figure 1.1 for an example 

of a quantizer in a 2-D state-space. 

3.1.2 Definitions of (Serni-)Logarithrnic Quantizers 

Logarithmic quantization, as achieved or used in [16, 13, 24], captures the intuition 

that the farther from the origin the state is, the less precise the control action and 

knowledge about the location of the state need to be. It is shown in [16] that the log 

quantization is the solution to a certain linear quantization problem. 

Definition 3.2. A p-based logarithmic quantizer (LQ) is a quantizer (q, S, O,U) with q 

such that for any i E z, q(x) = Ui if x En:, q(x) = -Ui if x E Oi, and q(x) = 0 if 

x E 0,zero, with 0, being given as 

nt = {x E Sbi+i < p'x ~'Yi} Vi E Z 

Oi = {x E S\-'Yi ~ p'x < -'Yi+i} Vi E Z 

f2zero = {x E S\p'x = O} 

(3.2) 

and with U = {±ui\ui+l = pui, i E Z} U {O}, where 0 ~ p < 1 is called the base, p E IRn 

is a constant vector, and 'Yi+l = P'Yi, i E Z. For cell nt (or Oi, 0,zero), the index is i+ 

(or i-, zero, respectively). 

Note that p'x gives the scalar product of vectors p and x, and the boundaries of cells 

are in fact the level surfaces of the linear function p' x. 
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For nonlinear systems, it is often convenient to consider semi-log quantizers, which 

have the major properties of LQ's. In fact, we will see that the semi-log quantization is 

the solution to a certain nonlinear quantization problem. 

Definition 3.3. A p-based semi-logarithmic quantizer (SLQ) is a quantizer (q, S, O,U) 

with q such that for any i E Z, q(x) = ui if x En{, q(x) = -ui if x E Oi, and q(x) = 0 

if x E D,zero, with D, being given as 

nt = {x E Sbi+i < p(x) ::::; /i} Vi E Z 

Oi = {x E Sl-/i :::;p(x) < -/i+1} Vi E Z 

D,zero = {x E Slp(x) = O} 

(3.3) 

and with U = { ±uilui+l = pui, i E Z} U {O}, where 0 ::::; p < 1 is called the base, 

p : S -; IR is a smooth function with p(O) = 0, p is called the partition function, and 

/i+l = P/i, i E Z. 

If a quantizer defined on S is p-based semi-logarithmic except on a finite number of 

cells, it is called an essentially semi-logarithmic quantizer (ESLQ) with base p. 

Remark 3.1. It is shown in [16, Lemma 2.1] that for an LQ, the choice of /o is 

immaterial in considering stabilization problems. In Lemma A.1 (see Appendix A) we 

can show this is also true for an SLQ. Therefore, we assume /o to be 1 without loss of 

generality in this thesis. 

Note that the only difference between an LQ and an SLQ is that the linear function 

p'x for an LQ is replaced by a smooth function p: S-; IR with p(O) = 0. Therefore, log 

partition has rectilinear boundaries (which are the level surfaces of the linear function 

p'x), and semi-log has curve boundaries (which are the level surfaces of the function 

p(x)). Log partition is symmetric w.r.t. the origin in the state-space, and each cell 

is a connected set, whereas semi-log is in general not symmetric, and each cell is not 

necessarily a connected set. See Fig. 3.1 for log and semi-log partitions in a 2-D state-

space. 

For an SLQ, since both the control value u and the partition of p(x) follow a logarith-

mic law with the same base, the graph of the quantizer in the p( x )-u plane is self-similar 
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s 

Figure 3.1 Examples of log and semi-log partitions in a 2-D state-space. A 
shows an LQ defined on S, and B shows an SLQ defined on S. 

with similarity ratio p. (To be more precise, the graph is constructed by homothety 

with ratio p [55]. See Figure 3.2.) Note that although the partition is generally not 

symmetric w.r.t. the origin in the state-space for an SLQ, the quantizer is symmetric 

w.r.t. the origin in the p(x) - u plane, as is an LQ. 

The self-similarity of an SLQ implies that its structure can be constructed using 

only four elements S, p, p(x), and u0 . Once the four elements are specified, the SLQ is 

uniquely defined as follows: 

1. Use S, p(x), and p to generate the partition 0 by equation (3.3). 

2. Use u0 and p to generate the set U. 

3. q is defined to map from the state x in each cell to its associated u. 

Each of these steps are easy to perform. Therefore, in practice it is easy to store 

the data about the four elements in memory and do calculation online to generate the 

quantizer. 

Notice that the cells become larger and larger when p(x) is farther away from 0, as 

for LQ's described in [16]. Notice again that, whenever the state x is approaching the 

boundary of a cell, the corresponding point in the p( x )-u plane is either approaching 
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Figure 3.2 The graph of semi-log partition in the p(x)-u plane. The graph 
has a self-similar and symmetric structure. Each number in 
brackets is the index of the cell. For any x s.t. p(x) E (1"1 , /o], 
index o+ is transmitted and u0 is used as the control input. 

the line u = k1p( x), or approaching the line u = k2p( x). In the x-u space, u = k1p( x) 

and u = k2p( x) are two manifolds, which are called the triggering manifolds. It is easily 

seen that an SLQ can be uniquely determined by its two triggering manifolds. For LQ's, 

the two triggering manifolds are simply two subspaces in the x-u space, which makes its 

implementation easy. 

A system with an SLQ can be seen as an automaton. The automaton has a countable 

infinite number of states, with a fixed output (i.e., the control input of the plant) assigned 

to each of them. Each state of the automaton is associated with one cell in the system's 

state-space. An instantaneous transition to a different state takes place if x crosses the 

boundary of a cell, and the new state of the automaton is decided by the position of 

x, i.e., the index of the cell that x is entering. As the system evolves continuously, 

the automaton evolves at discrete instants of time, and generates corresponding control 

inputs. Figure 3.3 illustrates the state transition of an automaton. 
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Figure 3.3 A hybrid automaton for a system with an SLQ. Bt denotes the 
state of the automaton associated with cell n;, etc. 

3.1.3 Definition of Finite Quantizer 

Below, we introduce finite quantizers. In practice, finite quantizers are used instead 

of infinite quantizers, since finite quantizers require only finite precision whereas infinite 

quantizers require infinite precision when the state approaches the origin. 

Definition 3.4. A finite quantizer (of order NJ is a quantizer q with D = {Di}!~~+u 

and U = {ui E IRlui = -u-i, i = -N + 1, · · · , 0, · · · , N - 1}. 

The finite quantizer used in this thesis is normally a finite truncation of an SLQ, 

which is obtained as follows. Consider an SLQ as defined by Definition 3.3. For some 

j E Z, let nt = {x E BIO < p(x) :::; /j}, and n; = {x E BIO > p(x) ;:::: -1j}, and use 

u* = k 1 rj in Dt, -u* in D;. For any i < j, let nt and the corresponding u be as in 

Definition 3.3. Then this quantizer has a finite number of cells. We refer to this type of 

finite quantizer as a finite semi-logarithmic quantizer (FSLQ). 

3.1.4 Density of Quantizer 

We define the density of a quantizer as follows. 

Definition 3.5. For a quantizer q of system (3.1), let 0 < E :::; 1, and let #q+[E] and 

#q-[E] denote the numbers of control values thatU has in the intervals [E, ~] and[-~, -E], 

respectively. Define 

. #q+[E] . #q-[E] 
'r/q = max{hmsup 1 , hmsup 1 }. 

E-+O - n E E-+O - n E 
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T}q is called the quantization density of q. For two quantizers f and g, f is said to be 

coarser than g if TJt < T/g· 

A p-based SLQ q defined on IR.n has density T}q = ~· A p-based SLQ q defined on 
p 

a compact set in IR.n has density T}q = ~· A finite quantizer has density zero. Two 
p 

quantizers which are only different in a finite number of cells have the same density, so 

a p-based ESLQ has the same density asap-based SLQ. 

3.2 Introduction to the Lyapunov-based Design 

In this thesis we will construct quantizers for system (3.1) based on the availability 

of a CLF for (3.1). Below we introduce the the Lyapunov-based design. In this thesis 

smoothness is assumed for all CLF's. 

3.2.1 Definition of CLF 

We introduce the concept of a CLF for a single-input nonlinear control system 

x = F(x, u); F(O, 0) = 0 (3.4) 

where x E X, u E U are defined as before. F is continuous. 

A function V : IR.n -+ IR.20 is said to be positive definite if V(X) > 0 for all x =/= 0, 

and V(O) = 0. It is said to be proper if { xlV(x) ~ a} is compact for all a > 0. A smooth 

function V is said to be infinitesimally decreasing if for any compact set E S: X, there 

is some compact subset US: U and for each 0 =/= x E E, we have 

inf (DV, F(x, u)) < 0. 
uEU 

(3.5) 

Here (-, ·) denotes the inner product, and DV = (~~)'. It can be shown that (3.5) 

is equivalent to the existence of a positive definite continuous function W : IR.n -+ IR.20 , 

such that 

inf (DV, F(x, u)) < -W(x). 
uEU 

(3.6) 



www.manaraa.com

18 

Definition 3.6. A control Lyapunov function {CLF) for system {3.4) is a function with 

the properties of positive definiteness, properness, and infinitesimal decrease. 

For affine system (3.1), (3.5) is equivalent to 

(3.7) 

for each 0 =/= x EX. Here L 9 V(x) = ~~ g, and Lt V(x) = ~~ f. 
We call a feedback k regular if it is locally Lipschitz on X \ {O}. The properties of 

CLF's are listed as follows [49, 48]: 

Lemma 3 .1. (a) For system ( 3.1), it admits a regular stabilizing feedback if and only if 

it admits a CLF. {Artstein's Theorem) 

{b) For system {3.4), the existence of a CLF implies asymptotic controllability of the 

system. 

(c) For system {3.4), any regular feedback such that a CLF is strictly decreasing is 

asymptotically stabilizing. 

3.2.2 Definition of Uniform CLF 

Now we introduce the concept of a uniform CLF (UCLF) for a single-input control 

system under persistently acting disturbances 

(3.8) 

where x E X, u E U are defined as before, Fd is continuous, the disturbance d( ·) 

is a scalar measurable function taking values in D, D is a compact set of admissible 

disturbance, dM = maxdED ldl. 

Definition 3. 7. Let V : IRn ---> IR;:::o be smooth, positive definite, and proper. V is said to 

be a uniform CLF {UCLF) for system {3.8) if there exists a continuous positive definite 

function W : X ---> IR;:::o, and for any bounded set E ~ X, there is some compact subset 

U ~ U such that 

minmax(DV, Fd(x, u, d)) < -W(x) 'Vx EE, x =/= 0. 
uEU dED 

(3.9) 
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Roughly speaking, a UCLF is a CLF whose derivative can be made negative pointwise 

by the choice of control value for any admissible disturbance d. A fundamental result 

regarding UCLF's is that the control system (3.8) admits a UCLF if and only if there 

exists a robustly stabilizing feedback for it [30, Theorem l]. The precise statement of 

this result and the notion of robust stabilization will be given in Section 3.3. For details 

about UCLF's, we refer to [30, 31]. 

3.2.3 Definition of RCLF 

In this subsection, we first present the definition of an RCLF and then show it 

does guarantee certain robustness. The properties of an RCLF are also described. The 

concept of RCLF is crucial for deriving the results in this thesis. In later chapters we 

will see that the availability of an RCLF guarantees the existence of a finite density 

robustly stabilizing quantizer, and the quantizer design method developed for RCLF's 

extends to a method for CLF's when only a CLF is available. 

Definition 3.8. (V(x), a) is called a robust control Lyapunov pair (RCLP) for system 

(3.4) on a compact set S ~ X containing a neighborhood of 0 if a > 0, V(x) is a CLF 

for (3.4) on S, and there exists some admissible control Ux for each x -=/= 0 in S, such 

that 

a2u; + (DV, F(x, u)) < 0. (3.10) 

The V ( x) in the above definition is called a robust control Lyapunov function (RCLF) 

for (3.4) on S. For simplicity, we always assume without loss of generality that S is a 

closed invariant set of V(x) unless otherwise specified. 

The RCLF is so called since it guarantees the existence of robustly stabilizing feed-

back (to be elaborated in Section 3.3). In the next lemma we show that an RCLF for 

the undisturbed system (3.4) is a UCLF for the system with a small enough persistently 

acting disturbance 

x = F(x, u) + G(x, u)d (3.11) 

where F(O, 0) = G(O, 0) = 0, F and G are continuous. Furthermore, we assume 

llG(x, u)ll/u2 is bounded by a constant c on the set S x U (where II · II is the norm 
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induced by (-, ·)). This assumption implies that the effect of the disturbance d cannot 

dominate the control input u; otherwise the system may not be controllable from u. 

Lemma 3.2. Suppose (V, a) is an RCLP for the undisturbed system (3.4) on S, and 

VM = maxxES llDVll (where II· II is the norm induced by(·,·)). Vis a UCLF for (3.11) 

on S if a 2 > cVMdM. 

Proof. We only need to show that if for any compact set E S: S, and for each x E E, 

x-=/=- 0, we have 

max(DV, F(x, ux) + G(x, ux)d) < 0. dED 

Because llG(x, u)ll/u2 is bounded by c, by the Cauchy-Schwarz Inequality, we know 

Thus, for any x E E, x -=/=- 0, 

maxdED(DV, F(x, ux) + G(x, ux)d) 

= (DV, F(x, Ux)) + maxdED(DV, IG(x, Ux)ld) 

< -a2u; + cVMdMu; 

< 0. 

Therefore, Vis a UCLF for (3.11). D 

This lemma says in essence that if the derivative of a CLF for an undisturbed system 

can be made negative enough pointwise by the choice of control input, then it is a UCLF 

for a disturbed system if the disturbances are small enough, and therefore robustly 

stabilizing feedback exists. Notice that a larger ~~ implies more robustness of the 

closed-loop system for a given V. If we normalize VM to be 1, then a can measure the 

robustness of the closed-loop system. That is, if (Vi, a 1 ) and (Vi, a 2 ) are two RCLP's 

with VM1 = VM2 = 1, and if 0:1 > 0:2, then (Vi, a 1 ) guarantees more robustness than 

(Vi, a 2 ). Hence, we call a the robustness level if VM is normalized. Note this definition 

of an RCLF differs from that in [21]. 

Concepts similar to our definition of RCLF are inspected by several researchers. In 

[47, 26] a generalized form of equation (3.10) is used to achieve optimality and robustness 
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to a class of uncertainties. In [4] it is used to render finite gain (from x to u) at the 

origin. An RCLF ensures finite gain at the orgin since equation (3.10) gives penalty to 

using large control when it requires V to decrease. 

Several classes of nonlinear affine systems, such as linear systems, feedback lineariz-

able systems, and locally linearizable systems, admit RCLF's. They are to be studied 

in greater detail in Chapter 5. 
(L V) 2 Suppose V is a CLF for system (3.1) on S. Define h(x) = Tr:;V on the set Sf = 

{x E SILfV(x) > O}. Let a~= inf h(x), and a~= liminf h(x). Then an RCLF has the 
X---tO 

following properties. 

Lemma 3.3. Suppose V is a CLF for system {3.1) on S. The following statements are 

equivalent: 

{1) V is an RCLF for system {3.1) on S. 

(2) V is such that a~ > 0. 

{3) V is such that a~ > 0. 

( 4) V is such that u = kL 9 V ( x) is stabilizing for some constant k < 0. 

Proof. (1) =? (2): Suppose V is an RCLF on S. Then there is some a 2 > 0 such that 

for each x #- 0 in S, we can find some Ux E U so that (3.10) holds. Therefore, 

(3.12) 

So 0 < a 2 < h(x) on Sf. Since a~ is the infimum of h(x), we know a~~ a 2 > 0. 

(2) =? (1): Suppose a~ > 0. For any 0 < a 2 < a~, if LfV < 0, then~ > O; if 

LfV = 0 and x #- 0, then L 9 V #- 0 and hence~> O; if LfV > 0, then the choice of a 

makes ~ > 0. Therefore, (3.12) is true, so (3.10) holds. Thus Vis an RCLF. 

(2) =? (3): It is obvious that 0 <a~ ::; a~ since a~ is the infimum of h(x) on Sf. 

(3) =? (2): Notice that on the set cl(Sf) (cl(·) denotes the closure), h(x) can be zero 

only if x = 0. So a~ > 0 implies a~ > O; otherwise we would have a~= 0. 

(2) =? (4): Take k = - 4~2 for any 0 < a 2 <a~. Let u(x) = kL9V(x). Then for any 
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x ES, 
a 2u 2 + L 9Vu + L1V 
= a2(LgV)2 - (LgV)2 + L V 

4o,4 2n2 f 
= - (Lg V)2 + L v 

4n2 f 
(3.13) 

< 0. 

The last inequality is true since, if L f V > 0 then a 2 < (~l ~~2 
, and if L f V = 0 

then L 9 V # 0, and if LtV < 0 then it is automatically satisfied. Sou= kL9V(x) is 

stabilizing. 

(4) =} (2): Suppose for any x # 0, LtV + k(L9V) 2 < 0 for some constant k < 0. 

Then if LtV > 0, we have (t'J2 > --t. So a~> 0. D 

Condition (2) says that the problem of checking when a CLF is an RCLF is reduced 

to solving a constrained optimization problem. Condition (3) says that V is an RCLF 

if and only if it has a certain limiting property around the origin. Condition ( 4) says 

that V ( x) is an RCLF if and only if domination redesign (cf. [26]) is applicable. These 

conditions may be difficult to check. For checking when a CLF is an RCLF, the following 

lemma provides a sufficient condition [26]: 

Lemma 3.4. Suppose V(x) is a CLF for system (3.1) on S. Suppose further the first 

nontrivial terms in the Taylor expansions of f(x), g(x), and V(x) have degrees df, d9 , 

and dv, respectively, and let fh(x), gh(x), and Vh(x) denote these nontrivial terms. If 

Vh is a CLF for the system x = fh(x) + gh(x)u and if dv ::::; dt - 2d9 , then V(x) is an 

RCLF for system (3.1) on S. 

Once we have verified that a CLF is indeed an RCLF, then (V ( x), a) is an RCLP if 

0 < a 2 <a~. 

We define the coarsest quantizer, or the quantizer with the smallest density, as fol-

lows. 

Definition 3.9. Given an RCLP (V(x), a) for system (3.1) on S, a 2 <a~, let Qa(V) 

denote the set of all quantizers q(x) such that for any x ES, x # 0, 

(3.14) 
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A quantizer q is said to be the coarsest for (V ( x), a) if q E arg inf gE Qa (V) 179 . 

The set Qa(V) is in fact the set of quantizers that robustly stabilizes system (3.1). 

A quantizer which is the coarsest for (V ( x), a) needs not be unique since different sets 

U may satisfy the same asymptotic property, and for the same U there may be different 

ways to define the function q mapping S into U. Moreover, a quantizer which is the 

coarsest for (V(x), a) may not be an element of Qa(V). At any rate, the density of 

quantization induces a measure of coarseness on the partitions in the state-space. The 

smallest density of all robustly stabilizing quantizers can be seen as an indicator of the 

complexity of the interaction between the controller and the plant. (Note the smallest 

density here depends on how "good" the RCLF is.) 

3.3 Discontinuous Systems, Stability, and Robustness 

Quantized feedback is a discontinuous feedback. Once a discontinuous feedback con-

trol k(x) is employed in a continuous-time control system, the existence and uniqueness 

of solutions, the notions of stability and robustness, and related theorems need to be 

reexamined or restated. In this section we provide some preliminaries for a discontinuous 

system. 

In this thesis the solutions to a quantized control system as well as the stability and 

robustness are to be interpreted according to [50, 31]. It can be shown that quantizers 

obtained in this thesis guarantee the existence of solutions, but not uniqueness. Based 

on the properties of CLF's shown in [50, 30, 31], we can prove the following useful lemma 

connecting (robust) CLF's to (robust) stabilization of discontinuous systems: 

Lemma 3.5. (a) Suppose V is a CLF for system (3.4). Then if k(x) is such that 

(DV, F(x, k(x))) < 0 Vx-/= 0, (3.15) 

then k( x) is a stabilizing feedback. 

{b) Suppose V is an RCLF for system (3.4). Then if k(x) is such that for some 

a> 0, 

a 2k2 (x) + (DV, F(x, k(x))) < 0 Vx-/= 0, (3.16) 
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then k(x) is a robustly stabilizing feedback under the presence of (small enough) 

persistently acting disturbance d(t), measurement errors e(t), and external disturbances 

w(t); i.e., k(x) stabilizes system 

x = F(x, k(x + e(t))) + G(x, k(x + e(t)))d(t) + w(t). (3.17) 

This lemma is similar to those smooth versions concerning stabilization and robust 

stabilization (see e.g. [21]), but due to discontinuous feedback great care must be taken 

here. A generalized solution has been introduced in [50, 31]. Stability concepts and 

theorems have been established for generalized solutions. We recap some concepts and 

results relevant to this thesis. 

Let 7r ={ti} be a partition of the interval [O, +oo). A solution (called n-trajectory) 

is defined recursively on each [ti, ti+l]: at ti, the state is measured, and correspondingly 

u = k(x(ti)) is obtained and maintained until ti+l· If on each [ti, ti+i] the solution exists, 

then the solution is well defined for all time. By the diameter of the partition 7r, we 

mean diam(n) = supi20 (ti+l - ti)· 

Definition 3.10. A feedback k(x) is said to stabilize (3.4) if for each pair (r, R), 0 < 
r < R, there exist M = M(R) > 0, b = b(r, R) > 0, and T = r(r, R) > 0 such that, for 

every partition 7r with diam( 7r) < b and for any initial state x 0 such that lxo I :::; R (where 

I· I is the Euclidean norm), then-trajectory x(·) of the closed-loop system starting from 

Xo is well defined, and it holds that: 

(1) (uniform attractiveness) lx(t)I :::; r Vt 2'.: r; 

(2) (overshoot boundedness) lx(t)I :::; M(R) Vt 2'.: O; 

(3) (Lyapunov stability) limR_.0 M(R) = 0. 

If under the presence of (small enough) persistently acting disturbances d(t), mea-

surement errors e(t) with le(t)I :::; <P for all t 2'.: 0, and external disturbances w(t) with 

llw(·)ll=:::; <P (where II· II= is the norm in L=([o, T], !Rn)), k(x) is a stabilizing feedback 

for the closed-loop system 

x = Fd(x, k(x + e(t)), d(t)) + w(t), (3.18) 

then k(x) is a robust stabilizing feedback for system (3.8). 



www.manaraa.com

25 

The following lemma is given in [30, 31]. It essentially links CLF's for (3.4) to 

stabilizing feedback, and UCLF's for (3.8) to robustly stabilizing feedback. Lemma 3.5 

directly follows from this lemma. 

Lemma 3.6. (a) The control system (3.4) admits a CLF if and only if there exists a sta-

bilizing feedback for it. Moreover, if a feedback k(x) (either continuous or discontinuous) 

satisfies 

(DV, F(x, k(x))) < 0 \ix# 0, 

then k is a stabilizing feedback for (3.4). 

(b) The control system (3. 8) admits a UCLF if and only if there exists a robustly sta-

bilizing feedback for it. Moreover, if a feedback k( x) (either continuous or discontinuous) 

satisfies 

max(DV, Fd(x, k(x), d)) < 0 \ix# 0, 
dED 

then k is a robustly stabilizing feedback for (3.8). 

The notion of practical stabilizability is given as follows. 

Definition 3.11. System (3.4) is said to be practically stabilizable, if there exists a CLF 

V ( x) such that, for any compact set C containing a neighborhood of the origin, and any 

Cs = { x E XIV ( x) :::; Cs} E C, there is a state-feedback controller k( x), function of C 

and Cs, such that (DV, F(x, k(x))) < 0 for all x EC\ Cs, and such that any state in Cs 

remains in it. 

By this definition, Cs is an attractor of C. Trajectories starting in C and outside 

Cs will be attracted toward Cs and will eventually enter it after finite time, and those 

starting in C never leave it. 

3.4 Summary 

In this chapter we have provided some useful mathematical preliminaries about quan-

tized control systems. First, various concepts of quantizers have been introduced. The 
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SLQ is the key notion here. Second, the Lyapunov-based approach has been described. 

RCLF's and their properties are our major interest, and will be used to derive our main 

results. Third, the notions of stability and robustness for a quantized system have been 

presented. 
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4 PROBLEM DEFINITION AND MAIN RESULTS 

In this chapter, we precisely define the problems we want to solve in this thesis and 

provide the solutions. We are interested in the following questions. What conditions 

imply the existence of quantized (robustly) stabilizing feedback of system (3.1)? What 

is the smallest possible density of the (robustly) stabilizing quantizers? How do we 

construct such a quantizer? 

The first problem we are interested in is to find sufficient conditions that ensure the 

existence of (robustly) stabilizing quantizers. The solution to this problem has obvious 

theoretical significance. 

Problem 4.1. Find sufficient conditions that guarantee the existence of {robustly) sta-

bilizing quantizers for system {3.1). 

The solution is given in the following theorem, in which (a) is applicable for the 

general nonlinear system (3.4). 

Theorem 4.1. {a) IfV is a CLF for system {3 ... {) on S, then {3.4) can be stabilized by a 

quantizer with a countable number of cells, or practically stabilized by a finite quantizer. 

{b) If V is an RCLF for system {3.1) on S, then {3.1) can be robustly stabilized by 

a finite density quantizer, or stabilized by a finite quantizer. 

Below, we outline the proof of (a), and leave the proof of (b) for later chapters. 

Proof. Since Vis a CLF, for any xo =f. 0, there exists some Ux0 E IR such that 

avl ax xo F(xo, Uxo) < 0. 
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Then for the fixed Ux0 , we know~~ F(x, Ux 0 ) is continuous in x. Therefore, we can find 

some ball with radius rx0 centered in xo, denoted B(xo, rx0 ), such that if x E B(x0 , rx0 ), 

then 

av 
ax F(x, Uxo) < 0. 

By doing these procedures for all x 0 -1- 0 in S, we can get an open cover of S \ {O} 

which is in a separable space IR.n. Thus, by the Lindelof Theorem (if a subset in a 

separable space has an open cover, then it has a countable subcover) [56], S \ {O} has a 

countable subcover; i.e., there exist x01 , x02 , · · · such that 

Note that based on the countable subcover, we can obtain a partition of S \ {O} (by 

eliminating overlap), and hence a quantizer with a countable number of cells. So (3.4) 

can be stabilized by a countable number of piecewise constant control inputs since they 

make V decrease strictly. 

Next we prove that for any given compact set C containing the origin, trajectories 

starting in S and outside C will be attracted toward C, and those in C will never 

leave it. This proof is simply done by following the procedures described above for all 

x 0 E K £ cl(S \ C), which forms an open cover for the compact set K. Then we can 

find a finite subcover of K. Based on the finite subcover, we can obtain a partition of K, 

and hence a quantizer with a finite number of cells on K. This completes the proof. D 

By Lemma 3.1, we can easily establish the following corollary: 

Corollary 4.1. If a control-affine system (3.1) can be stabilized by a regular feedback, 

then it can be stabilized by a quantized feedback. 

The next problem we want to solve is finding a robustly stabilizing quantizer for 

system (3.1) if an RCLP is given. This is relatively easy to solve and the solution 

provides insight to the construction of quantizers if a CLF, instead of an RCLF, is 

available. More precisely, the problem is: 
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Problem 4.2. Given an RCLP (V(x), a) for system (3.1) on S, a 2 < aJw, construct 

explicitly a quantizer q E Qa (V), and, if possible, characterize the coarsest quantizer. 

We present the smallest density of such a robustly stabilizing quantizer in the follow-

ing theorem. We can show that the coarsest one is essentially semi-logarithmic. We leave 

the details of the characterization of the coarsest one and the construction of robustly 

stabilizing quantizers for Chapter 5. 

Theorem 4.2. Suppose (V(x), a) is an RCLP for system (3.1} on S. If a~ < +oo, 

then the coarsest quantizer q* for (V ( x), a) has density 'r/* = In\ , where p* = kif k2, 
p* 

-1+.jl-0:2 /0:2 -l--Jl-o:2 /o:2 2 k1 = 20:2 s, and k2 = 20:2 s . If as = +oo, then the coarsest quantizer q* 

for (V(x), a) has density 'r/* = 0. 

The third problem we want to address is the construction of a stabilizing quantizer 

for system (3.1) if a CLF is given. 

Problem 4.3. Given a CLF V(x) for system (3.1} on S, construct explicitly a quantizer 

q such that for any x E S, x =f. 0, 

(4.1) 

and, if possible, find the smallest density of stabilizing quantizers. 

The solution to this problem is called a hierarchical semi-logarithmic quantizer (HSLQ), 

which will be introduced and elaborated in Chapter 6. We show that the smallest density 

that guarantees stabilization is zero. 
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5 QUANTIZED ROBUST STABILIZATION BASED ON 

AN RCLF 

In this chapter we present the solution to Problem 4.2. For a control-affine system 

with an RCLP given, we provide the smallest density of the robustly stabilizing quan-

tizers, characterize such a quantizer, and present a way to construct robustly stabilizing 

quantizers. We show that several classes of control-affine systems, such as linear systems, 

feedback linearizable systems, and locally linearizable systems, fall into this category, 

and their special features are used to derive more specific quantization results. 

5 .1 Coarsest Quantization 

In this section, we are interested in finding the smallest possible density of the ro-

bustly stabilizing quantizers. To avoid the trivial case that u = 0 can decrease the RCLF 

V (i.e., L1V(x) < 0 for all x =/= 0 in some neighborhood of the origin), we assume that 

in any neighborhood of the origin, there is some x =/= 0 such that L1V(x) > 0. For the 

reader's convenience, we state the result (Theorem 4.2) again: 

Theorem 5.1. Suppose (V(x), a) is an RCLP for system (3.1) on S. If a~ < +oo, 

then the coarsest quantizer q* for (V ( x), a) has density T]* = In\ , where p* = kif k2, 
p* 

k _ -l+y'l-a2/a~ d k _ -l-y'l-a2 /a~ ]'f 2 h h * 
i - 2°'2 , an 2 - 2°'2 . J a 8 = +oo, t en t e coarsest quantizer q 

for (V(x), a) has density rJ* = 0. 

The proof of this theorem (as well as the proofs of the lemmas and propositions in 

this section) is given in Appendix A. Note that the smaller the a 2 , the coarser the quan-

tization is, but the less robust the closed-loop system is. Although this theorem gives 
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the coarsest quantizer under some conditions, we want to remark that for a continuous-

time system, quantization density is only a partial measure of the complexity of the 

interaction between the quantizer and the system dynamics, in contrast to discrete-time 

systems [16]. Other quantities related to information transmission/processing, such as 

the mean number of switchings per unit time, are also important [36]. 

We want to stress that TJ* provided in Theorem 5.1 may not be an achieved infimum 

over all robustly stabilizing quantizers for the given RCLP. In other words, in some cases 

q* tj. Qa(V). The following lemma shows when the density TJ* is achievable. 

Lemma 5.1. q* E Qa(V) if and only if there is some a> 0 such that a~ ~ h(x) for all 

x in sfa = {x E SJIV(x) ~a}. 

Next, we will construct the coarsest quantizer q* if T/* is achievable, and in case TJ* is 

not achievable, we will construct a quantizer qE with density TJ* + E for any given E > 0. 

We will show that these quantizers are in fact essentially semi-logarithmic quantizers. 

Notice that if Oz~ {x E SILtV(x) < -8llxll 2 ,8 > O} is nonempty, then we only 

need to define quantizers on f2Nz = S \ f2z since on f2z we can use zero control input 

to hold (3.14). 

Construction of the coarsest quantizer q* 

Consider the case that TJ* is achievable. Suppose there is some a > 0 such that 

a~~ h(x) for all x in Sta· Let Sa= {x E SIV(x) ~a}, i.e., the smallest invariant set 

of V ( x) containing S fa. Then we can use a finite number of control values to drive the 

state from S \Sa into Sa (see Theorem 4.l(b)), and then focus on a smaller invariant 

set Sa, on which the coarsest quantization turns out to be semi-logarithmic. Since a 

finite number of control values do not affect the quantizer density, we know the density 

is determined by the quantization defined on Sa. 

Proposition 5.1. Suppose (V(x), a) is an RCLP for system (3.1) on S, and there is 

some a> 0 such that a~ ~ h(x) for all x in Sia- Then there exists a robustly stabilizing 

quantizer q* E Qa(V) with density TJ*. q* is an ESLQ: it has a finite number of cells 

on S \ Sa which drive the state from S \ Sa into Sa, and is p* -based semi-logarithmic on 

San nNz with p(x) = LgV(x) and Uo = kno· 
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Construction of quantizer q, 

Now we consider the case that T/* may not be achievable. Any density Tl such that 

Tl > Tl* is achievable; i.e., there exists a quantizer q, E Qa (V) with density TJ, = Tl* + E 

f 0 L _..l.. 2 a 2 { I ( ) 2} oranyE>. etp,=e ri<,a,= 1_(~)2 ,S1,= xES1hx >a, ,andS,bethe 
l+PE 

smallest closed invariant set of V(x) containing S1'" Then we can use a finite number 

of control values to drive the state from S \ S, into S,, and on S, we can construct a 

robustly stabilizing quantizer with density TJ,. 

Proposition 5.2. Suppose (V(x), a) is an RCLP for system (3.1) on S. Then for 

any given E > 0, there exists a robustly stabilizing quantizer q, E Qa(V) with density 

T/E =Tl*+ E. q, is an ESLQ: it has a finite number of cells on S \ S, which drive the state 

from S \ S, into Su and is p,-based semi-logarithmic on S, n ONz with p(x) = L 9V(x) 
-1+Jl-a2/at and uo = ki,/o where ki, = 2a2 . 

This proposition can be used for a more general purpose: the construction of a 

robustly stabilizing quantizer with any given achievable density, since E here is not 

necessarily small. Note the explicit construction of such a quantizer relies on solving 

a1 and a~ explicitly, which may be difficult in general. For several special classes of 

control-affine systems, such as linear systems, they can be easily computed, as we will 

show later. At any rate, the above theorem captures the fundamental law of robustly 

stabilizing quantization and has theoretic significance. 

The SLQ that robustly stabilizes system (3.1) can be seen as a 2-level hierarchical 

quantizer, if we view the dividing of S into ONz and Oz as Level 0 partition, which is to 

be refined by the semi-log partition (called Level 1 partition). (Here we consider only an 

SLQ instead of an ESLQ since we can always take a smaller invariant set as S on which 

an SLQ is built.) The 2-level hierarchical quantizer in the closed-loop can also be seen 

as a 2-level hierarchical automaton. For the 2-level HSLQ, the state-space partition and 

its associated automaton are illustrated in Figure 5.1. 
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Sz 

x E flz 
u=O 

wve!GG 
Figure 5.1 A 2-level hierarchical log quantization in the state-space and its 

associated 2-level hierarchical automaton. Bz denotes the state 
of the automaton associated with cell Dz, and BNz for DNz· 
The state BNz in Level 0 is the automaton in Level 1. 

5.2 Finite Quantizers 

In practical circumstances, we are interested in finite quantizers. Infinite quantizers 

may not be applicable in practice since it requires infinite precision when the state 

approaches the origin. The next proposition shows that by truncating the countable 

infinite quantizer to a finite one, system (3.1) is still stabilized. 

Proposition 5.3. Suppose q is an ESLQ on S that robustly stabilizes system (3.1). 

Then its finite truncation on B stabilizes ( 3.1) to the origin. 

Proof. Consider an ESLQ on B that robustly stabilizes system (3.1). For some j E Z, 

let nt = {x E BIO< LgV(x) :::; /j}, and n;;- = {x E BIO> LgV(x) 2:: -/j}, and use 

u* = k1 /j in Dt, -u* in D;;-. For any i < j, let n; and the corresponding u be as in 

Definition 3.3. Then we have a finite truncation of the robustly stabilizing quantizer, 

called qt. 

To show qt is stabilizing, we only have to show that on the compact set B, x -=/: 0 

implies V < 0. In Dj, since 0 < L9V(x) :=:; /j and k1 < 0, we have 

(5.1) 
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If L1V ~ 0, then the RHS of (5.1) is negative. If L1V > 0, then direct calculation 

can show that 

So 

Therefore qt is a stabilizing quantizer. D 

5.3 Quantization of Linear Systems 

Linear systems are control-affine systems; hence the above results are applicable to 

linear systems. Moreover, we can show that every quadratic CLF (QCLF) is an RCLF for 

a linear system, and we can simplify the relevant computation. So, we can characterize 

its quantization more thoroughly. 

Consider a single-input linear system 

x =Ax+ Bu. (5.2) 

Suppose (5.2) has all its eigenvalues unstable but stabilizable. Then for any Q > 0, 

there exists a unique P > 0 such that 

PA + A' P - PB B' P = -Q. 

We know V = x'Px is a CLF. Then L9V = 2x'PB, and L1V = x'(PA+A'P)x. 

The following lemma says that any QCLF for linear system (5.2) is an RCLF, and 

a~ = o:1I has an analytic formula. 

Lemma 5.2. lfV(x) is a QCLF for system (5.2), then (V(x), a) is an RCLP for system 

(5.2} if 0 <a< o:M, where 
2 2 1 

O'.M = 0'.3 = 1 > 1 
1 - a2 

with <Y 2 = B' PQ- 1 PB > 1. 
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The proof of this lemma (as well as the proofs of the following two propositions) is 

given in Appendix B. Using this lemma we can obtain the complete solution to Problem 

4.2 for linear systems. That is, system (5.2) can be robustly stabilized by an LQ q; given 

an RCLP (V(x), a) as in Lemma 5.2, q can be constructed as in Proposition 5.1 and is 

the coarsest for the RCLP. 

Proposition 5.4. Suppose CV, a) is an RCLP for system (5.2), where V = x' Px is 

a QCLF with P > 0 such that A'P +PA - PBB'P = -Q for some Q > 0, and 

0 < a 2 < ai£ = a~ = 1 _1~ with (]' 2 = B' PQ-1 PB > 1. System (5.2) can be robustly 
()' 

stabilized by an LQ q*, which is the coarsest quantizer for (V, a). q* can be derived from 

the RCLP as in Proposition 5.1. 

Therefore, for any 0 < a 2 < ai£, a quantized control law can be directly derived 

from 
-1 ± J 1 - a 2 ( 1 - ~) 

iJ,(ll.(2l = u B' Px 
2 ' a 

(5.3) 

which can be rewritten in the following equivalent form 

-1 ± .l. vPl,(2) = ua B' Px 
a2 (5.4) 

where(]'; = B' PQ-;;, 1 PB, and Qa = P BB' P - a 2 (A' P +PA). 

In [13, 16], the coarsest quantizer over all QCLF's has been found. Likewise we can 

find the coarsest quantizer over all QCLF's w.r.t. a given robustness level a. Note that 

we require the QCLF's be normalized over the given compact set S; i.e., VM = 1 (refer 

to Section 3.2). Without loss of generality, we can assume S = { xlx'x ~ 1 }. We say 

a robustness level a is achievable on S if there is some QCLF V such that (V, a) is an 

RCLP. 

Proposition 5. 5. For a given robustness level a > 0 and a compact set S = { x Ix' x ~ 1}, 
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the robustness level a is achievable if and only if the LMI problem 

inf I 

s.t. RA'+ AR - 1BB' < 0 

R?:. I 

1<1 
a21 < 1 

(5.5) 

is feasible. Furthermore, if (R*,1*) is the optimal solution for problem (5.5), then the 

QCLF that gives the coarsest quantizer over all QCLF's is V = x'(R*)-1x, and the 
l-y'l-a2'Y* corresponding base is p* = ~. 
l+ l-a2 'Y* 

5.4 Quantization of Feedback Linearizable Systems 

An input-to-state feedback linearizable system can be transformed into 

x =Ax+ B/3-1(x)(u - 1(x)) (5.6) 

where x ES, u E IR, BE !Rn, (A, B) is controllable, /3(x) is nonsingular for all x ES, 

1(0) = 0, and /3(x), 1(x) are smooth [27]. 

The following supporting lemma guarantees that system (5.6) admits an RCLF, and 

its RCLF's can be found easily by investigating its linearization. 

Lernrna 5.3. (a) If V(x) = x'Px is a QCLF for system (5.2), then V(x) is an RCLF 

for system (5.6). 

{b) Suppose V(x) = x' Px is a QCLF for system (5.2), Vh(x) has an higher order 

than V(x), and Vs(x) = V(x) + Vh(x) is a CLF for system (5.6). Then Vs(x) is an 

RCLF for system (5.6). 

We proceed with the main results and postpone the proof of this lemma in Appendix 

C. This lemma helps us to establish the following proposition regarding the quantized 

robust stabilization of system (5.6). 
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Proposition 5.6. System (5.6) can be robustly stabilized by an SLQ q. q can be derived 

from an RCLF Vs = x' Px + Vh(x), where P is the positive definite solution of A' P + 
PA- PBB'P = -Q with Q > 0, and Vh(x) has an higher order than x'Px. 

System (5.6) has two terms involving nonlinearity: ,e-1 (x), the multiplicative non-

linearity, and ')'(x), the additive nonlinearity. If 1,e-1 (x)I = 1, then the multiplicative 

nonlinearity does not affect the system; if 1,e-1 ( x) I > 1, we regard it as "good nonlinear-

ity" since it helps us to save control effort, whereas if 1,e-1(x)I < 1 it is regarded as "bad 

nonlinearity". Similarly, if')'(x)1-L9 Vs(x), thenithasnoeffecton Vs; if')'(x)L9 Vs(x) > 0, 

then it helps to make Vs ( x) decrease and thus it is "good nonlinearity", whereas if 

'l'(x)L9 Vs(x) < 0 it is regarded as "bad nonlinearity". 

Rather than cancelling all nonlinearity as does the feedback linearization approach, 

we want to make use of good nonlinearity to save control effort. Our major control effort 

is focused on bad nonlinearity. This also has advantages over some approaches in robust 

control design since they may be too conservative. 

The quantizer is designed as follows (for simplicity we only consider a quadratic 

RCLF here): 

(1) On the set {x E Sll,8-1 (x)l 2:: l,')'(x)L9 V(x) 2:: O}, use a1r =inf x'('.::!/I)x' and 

-1±J1--!5--
u(l),(2) = 2 QM B' Px. 

a 
(5.7) 

(2) On the set {x E Sll,8-1(x)l 2:: l,')'(x)L9 V(x) < 0}, usea1r =inf x'(A'P+~~~~~~)LgV(x)' 

and 
-1± 11--!5--

u~(l),(2) = v QM B'P 
2 x. a 

(5.8) 

(3) On the set {x E Sll,B-1(x)I < 1, 'l'(x)L9V(x) 2:: O}, use a1r =inf x':,f:::~~;;x), 

and 
-1±J1--!5--

u(l),(2) = 2 QM ,e-l(x)B' Px. 
a 

(5.9) 

( 4) On the set { x E SI l,8-1 (x) I < 1, ')'(x)L9 V(x) < O}, use a1r =inf x'(A'~:;~;=~~~:)~~V(x), 
and 

-1±J1-2?:... 
11C 1l,(2l = 2 Q~ ,e-1(x)B' Px. 

a 
(5.10) 
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5.5 Quantization of Locally Linearizable Systems 

Suppose system (3.1) is locally linearizable; that is, system (3.1) can be written as 

x =Ax+ Bu+ fi(x) + gi(x)u (5.11) 

where (A, B) is the linearization, A is unstable, (A, B) is stabilizable, and Ji ( x), 

g1(x)u are higher order terms. 

The following lemma guarantees that system (5.11) admits a local RCLF V (meaning 

the existence of a compact set around the origin on which V is an RCLF), and V can 

be found easily by investigating its linearization. 

Lemma 5.4. If a quadratic function V(x) = x' Px is a CLF for system (5.2), and Vh(x) 

has an higher order than V(x), then V8 (x) = V(x) + Vh(x) is a local RCLF for system 

(5.11). 

Proof. Since Vis a QCLF for system (5.2), we know Vs is a local CLF for system (5.11). 

Because Vis quadratic, by Lemma 3.4 we know Vs is an RCLF. D 

This lemma helps us to establish the following proposition regarding the quantized 

robust stabilization of system (5.11). 

Proposition 5.7. System (5.11) can be locally robustly stabilized by an SLQ q. q can 

be derived from an RCLF V = x' Px + Vh ( x), where P is the positive definite solution of 

A' P +PA - PBB' P = -Q with Q > 0, and Vh(x) has an higher order than x' Px. 

Proof. The proof is a direct result of Lemma 5.4. D 

5.6 Summary 

In this chapter we have presented results on the quantized robust stabilization of a 

single-input nonlinear affine system if it admits an RCLF. We have provided the smallest 

density 'r/* for an RCLP and have constructed the coarsest quantizer q* if 'r/* is achievable. 

We have also constructed quantizer qE with density 'r/* + E for any E > 0 ( E not necessarily 
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small). Furthermore, we have shown that the finite truncation of a robustly stabilizing 

quantizer ensures stability of the closed-loop system. Finally, we have considered several 

important classes of control-affine systems. We have shown how their special structures 

can be exploited to find RCLF's and to design quantizers. 
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6 QUANTIZED STABILIZATION BASED ON A CLF 

In this chapter we present the solution to Problem 4.3. For a control-affine system 

with a CLF given, we provide one way to construct a stabilizing quantizer. The quantizer 

is an HSLQ, and the closed-loop system is hierarchical. The finite truncation of a 

stabilizing HSLQ leads to practical stability of the closed-loop system. 

6.1 Hierarchical Quantizers 

For the reader's convenience, we provide system (3.1) again: 

x = f(x) + g(x)u; f(O) = 0 

where f and g are C1 functions, x EX <::;; rn;,n, Xis the state-space, u EU<::;; JR, U is the 

admissible control set. 

When implementing results of Chapter 5, sometimes we can only have a very small 

o: over set S, causing control value u to be very large, although smaller control in 

some subset of S is possible. An approach to overcome this deficiency is to partition 

S into disjoint subsets, and on each subset we define a quantizer qm, which allows 

us to impose larger o: in some subsets and ensure smaller control. This leads to a 

hierarchical quantization structure. This also gives us a method to design stabilizing 

quantizers for system (3.1) with a CLF (possibly not robust). These quantizers have a 

hierarchical semi-logarithmic structure, which is universal to all single-input nonlinear-

affine continuous-time systems with CLF's available. 

Let Dz= {x E SIL1V(x) < -c5llxll 2 , c5 > O}, and DNz = S \Dz. We first partition 

DNz \ {O}, the set on which we need nonzero control, into disjoint subsets { Km}~=l with 

0 tj:_ cl(Km) for all m. Let o:~m = infxEKrnnsf h(x). Obviously, we have o:~m > 0 for all 
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m. Then we can define a semi-log quantizer qm on each Km. If the state is in Km, qm 

is employed. If the state is driven outside of Km into Km+i, quantizer qm+l is switched 

to. Each qm makes V decrease and finally sends the state to the origin. This leads 

to a hierarchical semi-logarithmic quantization structure. In this thesis we call such a 

quantizer a hierarchical semi-logarithmic quantizer (HSLQ). Figure 6.1 illustrates the 

state-space partition of an HSLQ. 

Proposition 6.1. Suppose V is a CLF for system (3.1) on S. System (3.1) can be 

stabilized to the origin by an HSLQ. Level 1 quantization is a partition of ONz \ {O} by 

disjoint sets { Km}~=l with 0 tJ_ cl( Km) for all m. Level 2 quantization is obtained by 

defining a Pm-based SLQ qm on each set Km with p(x) = L9V(x) and uo = k1m'Yo, where 
_ _ -l+-jl-0<?n/0<7vim _ -l--Jl-0<?n/0<7vim 2 2 

Pm - k1m/ k2m, k1m - 2 2 ' k2m - 2 2 ' and 0 < am < a Mm. am am 

Proof. It is sufficient to show that ai£m > 0 on each cl( Km); the proposition follows since 

on each Km, V continues to decrease. On the compact set cl(Kk) n {xlLtV(x) 2:: O}, 

we have L9 V =/= 0 (otherwise LtV < 0, a contradiction), and LtV =/= oo; so (~1~J2 is 

bounded below by some positive number. Therefore ai£m > 0. 

P'x = "'(o 

P'x = 11 

Figure 6.1 Example of Proposition 6.1: hierarchical log quantization of 
state-space. The ellipses show Level 1 quantization and the 
straight lines show Level 2 quantization. Level 2 quantization 
refines Level 1 quantization. 

D 

Proposition 6.1 implies that a general control architecture can be built for system 

(3.1) if (3.1) admits a CLF. This architecture is a 3-level hierarchical quantizer, if we 
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call the partitioning of S into DNz and Dz Level 0 partition. Higher levels in the 

hierarchy manipulate only quantized information about the dynamics at lower levels. 

System (3.1) with the quantizer can be seen as a hierarchical automaton. The 3-level 

hierarchical automaton is illustrated in Figure 6.2. In this figure, if Level 1 quantization 

is decided by the level surfaces of llxll, then the logic conditions for state transition are: 

(1) L1V(x);::: -8llxll 2 ; (2) L1V(x) < -8llxll 2 ; (3) llxll 2 <cm; and (4) llxll 2 ;::: Cm, where 

{ cm}~=l is a positive decreasing sequence. 

Sz 

Level 0 Level 1 Level 2 

Figure 6.2 3-level hierarchical automaton for Proposition 6.1. The state 
SNz in Level 0 is the automaton in Level 1. The state sk in 
Level 1 is the automaton qk in Level 2. 

Note that here we require Level 1 partition to satisfy only the property 0 ~ cl(Km)· 

Designers have the freedom to design Level 1 partition. Normally Level 1 partition is 

given by the level surfaces of V(x), L9V(x), llxll, etc. However, we do not have a way 

to optimize Level 1 and Level 2 partitions. Searching of the optimal joint partition will 

be the subject of future research. 

Note that by assuming Vis a CLF for system (3.1) on S, we include the special case 

that Vis also an RCLF. The above result applies to a system with an RCLF. It is easy 

to see that if V is an RCLF, then the HSLQ given by Proposition 6.1 ensures robust 

stabilization. 

The above proposition helps us to establish the following result: 
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Proposition 6.2. The smallest density of all quantizers that stabilize system (3.1) is 

zero. 

Proof. Consider the HSLQ designed in Proposition 6.1. Choose the sequence {am}~=l 

such that °'m+i < ~2 °' . Then Pm converges to zero as m goes to infinity. Consequently 
°'M(m+l} °'Mm 

the density of the quantizer is zero. D 

Although we have found the smallest density of all stabilizing quantizers, a quantizer 

with the smallest density may not have some "nice" properties such as finite gain, (see 

Section 6.3), and it leads to fast increase of the gain as the state approaches the origin. 

If we want the increase rate of the gain to be slow, we normally need to use infinite 

density quantizers. These quantizers may not be favored in practice. By relaxing the 

requirement of stabilization, we can construct quantizers with a finite number of cells 

and achieve practical stabilization, as we present in the next section. 

6.2 Finite Hierarchical Quantizers 

The HSLQ defined above has an infinite number of cells. The next proposition says 

that its finite truncation is practically stabilizing. The resulting finite quantizers are 

useful in practice. 

Proposition 6.3. Suppose V is a smooth CLF of system (3.1} on S. System (3.1} can 

be practically stabilized to the origin by a finite hierarchical semi-logarithmic quantizer. 

The hierarchical quantization of the state-space is characterized as follows. Given an 

open set N ~ S, 0 E N, Level 1 quantization is defined as a finite partition of S by 

disjoint sets { Km}~=l and N, and Level 2 quantization is obtained by defining a Pm-based 

FSLQ qm on each set Km with p(x) = L9V(x) and Uom = kim/o, where Pm= kim/k2m, 
-1+y'1-a2 /a2 -1-J1-a2 /a2 

kim = 2 2 m Mm ' and k2m = 2 2 m Mm • On the set N' u = 0 is used. am am 

Proof. The proof requires only small modifications of previous ones. We skip it here. D 
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6.3 A Brief Discussion on CLF, RCLF, and Quantized Stabi-

lization 

So far, we have shown that, for the single-input nonlinear affine system (3.1), if a 

CLF is available, then it can be stabilized by an HSLQ with a countable number of 

cells, or practically stabilized by a finite HSLQ; if an RCLF is available, then it can be 

robustly stabilized by an ESLQ with a countable number of cells, or stabilized by an 

FSLQ. These quantizers are explicitly constructed; i.e., we have proven Theorem 4.1 in 

a constructive way. 

It is clear from above that the availability of an RCLF guarantees some "nice" proper-

ties of quantization; that is, a simple partition (semi-log partition instead of hierarchical 

semi-log partition) is obtained, robust stabilization is achieved, and finite gain (from x 

to u) is ensured. However, if the only available CLF is not robust, i.e., a~ = o:~ = 0, 

the above mentioned properties may not be achieved. As the state approaches the ori-

gin, the quantizer constructed in Proposition 6.1 normally generates higher and higher 

gain, and leads to infinite gain at the origin. The increase rate of the gain as the state 

approaches the origin has a certain connection with the quantization density: a slower 

increase rate of the gain requires a larger density. 

6.4 Summary 

In this chapter we have presented results on the quantized stabilization of a single-

input nonlinear affine system if it admits a CLF. The stabilizing quantizer designed here 

is hierarchical semi-logarithmic. By truncating this stabilizing quantizer with infinite 

cells, we have obtained a finite quantizer that guarantees practical stabilization. A by-

product result is that the quantization constructed here results in a hierarchical control 

system. 
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7 FURTHER DISCUSSION 

In this chapter we discuss briefly some interesting but unsolved topics relevant to 

the results we obtained, such as chattering-free quantizers, attention cost, and quanti-

zation of partially feedback linearizable systems. We do not intend to provide complete 

solutions to these problems since they are generally difficult to solve. This preliminary 

research lays a foundation for future work. 

7.1 Chattering-free Quantizers 

By switching, we mean the controller changing its control value. For a continuous-

time system, when a quantized control law is employed, the RHS vector field is discon-

tinuous, which may lead to chattering, or repeated infinitely fast switching. When such 

a quantized control law is implemented, it leads to fast switching (and not infinitely 

fast switching, since that is not possible for a physical system), which can be harmful, 

and requires more communication overhead. In this section we eliminate chattering in 

quantized control by applying switching control with dwell time developed and used in 

[8, 24]. In this approach, switching logic with a fixed dwell time is used so that only 

finite switchings can happen in finite time. 

By triggering, we mean the state x crossing the boundary of a cell; that is, in the 

x-u space the state reaches the triggering manifold, and a triggering signal is sent. A 

switching logic with a fixed dwell time T basically says that a triggering gives rise to a 

switching only if during T before the switching occurs, there exists no other switching. 

The details are described as follows. When a switching occurs, the controller starts a 

timer. During the timing, no switchings are initiated; triggerings are ignored. When 
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time interval T has elapsed, the state is checked. If the state is found to be in a cell 

other than that which it entered at the switching, a new switching occurs. Else, the 

next triggering causes the next switching. Clearly, consecutive switching times have a 

minimum separation of T. 

Lemma 7.1. Suppose q(x) is a stabilizing quantized feedback for (3.1) on S. Then for 

any r > 0 there exists some T > 0 (T depending on r) such that q(x) with dwell time T 

practically stabilizes (3.1) to the r-ball of the origin. In addition, if 

inf 
xES 

W(x) 
L2 V > 0, 

J+gq 
(7.1) 

where W(x) is some positive definite function such that LtV(x)+L9V(x)q(x) < -W(x) 

for all x except 0, then any 0 < T ::=;TM is such that q(x) with dwell time T practically 

stabilizes ( 3.1). 

Applying this lemma to previous propositions and corollaries, we see that these 

quantizers can be made chattering-free and guarantee practical stability of the closed-

loop systems. 

Proof. Since q(x) is stabilizing on S, for the given r there is some <5 > 0 by Definition 

3.10 such that for every partition 7r with diam( 7r) < <5, the 'Tr-trajectory x(-) of the closed-

loop system is well defined and satisfies (1)-(3) of Definition 3.10. Let T < <5. We want 

to show that q(x) with dwell time T can practically stabilize (3.1) to the set {xllxl < r} 

(where I · I is the Euclidean norm). 

First we construct a partition 7r1 = {ti} starting from t = 0 by letting ti be the ith 

switching time as we described above. Next we refine the partition 7r1 by adding points 

in the interval [ti, ti+1] for i ~ 1. If the length of the interval is shorter than T, we do not 

add points; if the length is larger than T, we add points to this interval until the distance 

between every two successive points is less than T. Finally we get a refined partition, 

denoted 7r2, and diam(7r2) < <5. Therefore, the quantizer q(x) with the partition 7r2 can 

drive the state into the r-ball of the origin. 
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Observe that no triggering nor switching occurs at the added points. Hence we can 

remove these points from ?T2 and the resulting partition still ensures that the state can 

be driven into the r-ball of the origin. Then we know q(x) with the partition 1f1 can 

practically stabilize (3.1). That is, the dwell time practically stabilizing quantizer exists. 

Now we show the second part of the lemma. The idea is that by using the posi-

tive definite function W(x) in (3.6), we can tolerate "imprecise" quantized input when 

switching logic with dwell time is used, and the resulting closed-loop system is practi-

cally stabilized. Here we say "imprecise" since the switching logic based on state-space 

partition is exactly followed only if no triggering occurs during T after a switching. So, 

we want to find some T small enough so that in the dwell time, V has only very small 

change, which can be tolerated by W ( x). During T, V may have a small variation !J. V, 
which can be approximated by !J. V :::::::: VT= L}+gu VT. Note that during the dwell time 

T, no switching occurs, so u is constant and its derivative is 0. If !J. V ::; 0, then V < 0 

is still valid. If !J. V > 0 but !J. V ::; W ( x) holds for some T chosen to be sufficiently 

small, then we know the closed-loop system is still practically stable. That is, (7.1) is a 

sufficient condition. D 

The drawback of this lemma is that it does not preserve robust stabilization, nor 

stabilization, as we have achieved before. The only result we can achieve using this 

lemma is practical stabilization. How this can be improved is still unknown and will be 

investigated in future research. 

7.2 Comments on Attention 

In this section we briefly discuss the relation between attention and our results about 

quantization. We show that our quantizers do reduce the attention cost; hence they may 

be useful in practice. 

Attention is investigated in [7, 36, 16] and is interpreted as the effort of implemen-

tation of a control law, although in these papers the definitions of attention cost take 

different forms to accommodate different systems. Again, we need to redefine attention 
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cost to focus on measuring the interaction between the controller and the plant. The 

attention functional introduced in [7] leads to zero cost for our quantized systems, since 

u has first partial derivatives equal to zero almost everywhere. [36] defines attention 

cost as the mean value of switchings per unit time. However, to measure the required 

effort of the control law it might be necessary to include the length of data to be trans-

mitted/ processed. [16] links state-spacextime quantization density to attention cost for 

LQ's with infinite cells. 

We would like to define attention cost for quantized control so that it captures the 

following intuitions: 1) attention cost takes into account communication effort (or, at-

tention of information transmission through communication channels) and computation 

effort (or, attention of information processing); 2) faster switchings results in larger 

attention cost; and 3) longer data (also called symbol) results in larger attention cost. 

The intuitions listed above suggest we define attention cost as AC = ~ flog2 Nl Eb, 

where T is the mean time between switchings ( ~ is the symbol rate), N is the number of 

cells of the quantizer (a larger N requires more bits to represent state information and 

control commands), flog2 Nl is the number of bits for one symbol assuming symbols 

are equiprobable (with I al giving the nearest integer no smaller than a), and Eb is 

the energy spent for transmitting/processing one bit (which resembles "bit energy" in 

communication theory). 

This definition of attention cost coincides with the concept of average power of digital 

signals in communication theory, except that Eb here takes into account both commu-

nication and computation effort. 

If a control law has infinite attention cost, then it either has infinite bits to trans-

mit/process each time, or it must transmit/process data infinitely fast, which means the 

control law is difficult to implement using practical digital channels/computers. A con-

trol law with finite attention cost implies that there are only finite interactions in finite 

time (attention of the channel/ controller is coarsely distributed along the time axis), and 

each time an interaction occurs, a finite-bit data-signal is handled (finite energy is con-

sumed), which is suitable for practical use. Furthermore, the larger the attention cost, 
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the more challenging is the communication/ computation process. Therefore, we consider 

our definition of attention cost suitable for measuring communication/ computation ef-

fort. 

Traditional control schemes cost infinite attention since switchings are continuously 

distributed along the time axis and infinite precision of data is assumed. Countable 

infinite quantizers and quantizers with chattering also have infinite attention cost. Finite 

quantizers obtained in this thesis can be made chattering-free by applying Lemma 7.1. 

For these quantizers, we have the following result: 

Corollary 7 .1. For finite quantizers without chattering, the attention cost is finite. 

Proof. Immediate and skipped. D 

This corollary ensures that results on quantization in this thesis are indeed mean-

ingful for practical applications. 

Notice that attention cost can be reduced by paying attention only on demand. 

[16] investigates a uniform sampling strategy together with logarithmic quantizers for 

continuous LTI systems. When the logarithmic quantizer is truncated to be finite, it 

results in finite attention cost as defined in this thesis. Although uniform sampling is 

widely used and has obvious advantages, it may not lead to minimum attention cost 

since it fixes the time to pay attention a priori. In contrast, the quantizers built in this 

thesis allow us to pay attention in a more flexible way, thus increasing the possibility of 

obtaining less costly control. In fact, the quantizers designed in this thesis pay attention 

only when attention is needed. That is, attention (and communication/ computation 

effort) is used on demand. Only when the decrease of the CLF is not fast enough, an 

interrupt is sent and attention is requested and given. In some examples we will show 

later, we observe that most of the time the quantized controllers do nothing but wait for 

the interrupt request coming. Thus such a quantized control law can be implemented 

without diverting much attention from other tasks which are more pressing, and the 

efficiency of communication/ computation resources is improved. 
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We would like to point out that the attention cost can measure communication/ com-

putation effort more precisely if we study the coding scheme and calculate the mean 

length of one symbol. This requires study of the dynamics of resulting quantized systems 

(which is relevant to the work described in Section 2.3) and will be investigated in future 

work. 

As a final comment, we remark that in practice attention cost should be considered 

together with other factors. For one thing, our definition of attention cost measures only 

the average effort of a control law; however, to allocate communication/computation 

resources efficiently we need to consider other characteristics such as maximum instan-

taneous effort. Another reason is that low attention cost may imply slow convergence of 

the states; a balance between the effort of the control law and the performance of the 

system should be considered, as is done in [7]. 

7 .3 Quantization of Partially Feedback Linearizable Systems 

A partially feedback linearizable system can be transformed into 

~ =A~+ B/3-1 (~, 11)(u - 1(~, 17)) 

11 = q(~, 11) 
(7.2) 

where x = ( e, 171)' E S ~ IR.n, ~ E IR.r, 11 E IR.n-r, u E IR, B E IR.r, (A, B) is controllable, 

f3(x) is nonsingular for all x E S, 1(0) = 0, and f3(x), 1(x) are smooth. [25, 27] 

Through an invertible change of control of the form 

u = /3(~, 17)v + 1(~, 17), 

system (7.2) is partially linearized; that is 

~ =A~+ Bv 

11 = q(~, 17). 

(7.3) 

(7.4) 

The main result for partially feedback linearizable systems is that, if the partially 

linearized system (7.4) admits a quadratic RCLF V(x), then V(x) is also an RCLF 

for system (7.2), and semi-logarithmic quantization can be directly derived from V(x). 



www.manaraa.com

51 

Therefore, once a quadratic RCLF for system (7.4) is found, we can robustly stabilizing 

system (7.2) by an SLQ. The proofs of the results in this section are given in Appendix 

D. 

Proposition 7.1. If system {7.4) admits a quadratic RCLF V = x'Px, then system 

(7.2) can be robustly stabilized by an SLQ q8 ; q8 can be derived from the RCLF V. 

This proposition follows directly from the following lemma. 

Lemma 7.2. If a quadratic function V(x) is an RCLF for system {7.4), then it is an 

RCLF for system {7.2). 

Therefore, the problem of quantizing system (7.2) is reduced to the problem of search-

ing for a quadratic RCLF for system (7.4). If (7.4) has certain structure, e.g., strict-

feedback structure ([27, 29]), then there are certain procedures that can be followed to 

find a QCLF, which sometimes can be shown to be an RCLF. Below, we provide another 

way to quantize (7.2) based on a quadratic RCLF constructed for (7.4) (and hence for 

(7.2)) under certain conditions. A general method is still missing. 

Corollary 7.2. For system {7.2), suppose P is the positive definite solution of A' P + 
PA - PB B' P = -Q with Q > 0, and W ( 17) is a quadratic Lyapunov function for the 

zero dynamics iJ = q(O, 17) with dd;;' q(O, 17) < -c1ll111[ 2 for some c1 > 0. Then there exists 

some c > 0 such that V = 2( P~ + cW(17) is an RCLF for system {7.2), and system 

(7.2) can be robustly stabilized by an SLQ q8 ; q8 can be derived from the RCLF V. 

This corollary relies on the following supporting lemmas. 

Lemma 7.3. V(x) is a CLF for system {7.2) if and only if V(x) is a CLF for system 

{7.4). 

This lemma shows that to find a CLF for system (7.2) we need only to search for a 

CLF for system (7.4). The following lemma may be useful in constructing a CLF for 

system (7.4). 
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Lemma 7.4. For system (7.4), suppose P is the positive definite solution of A' P +PA-

P BB' P = -Q with Q > 0, W(77) is a Lyapunov function for the zero dynamics iJ = 
q(0,77), and there exists c1 > 0 such that dd~ q(0,77) < -c1ll77ll 2 . Then V = (P~+c2W(77) 
is a CLF for system (7.4) for some c2 > 0, and v = -~B' P~ is a stabilizing control. 

The following lemma constructs an RCLF for system (7.4). 

Lemma 7 .5. For system (7.4), suppose P is the positive definite solution of A' P +PA-

PB B' P = -Q with Q > 0, and Vi= (P~ + cW(77) is a CLF for system (7.4) for some 

c > 0 and some function W(77). Then V = 2( P~ + cW(77) is an RCLF for system (7.4). 

7.4 Summary 

In this chapter we have discussed briefly some topics relevant to the results we ob-

tained, such as chattering-free quantizers and attention cost. The quantizers designed 

before this chapter might not be possible for implementation, since they may cause 

chattering. We have discussed how to eliminate chattering by introducing dwell-time 

switching logic, and we have performed preliminary research on attention cost. We have 

also discussed the quantized control of partially feedback linearizable systems. These 

systems are much more complicated, and we derived some preliminary results regarding 

the existence of a quadratic RCLF. The limitations and deficiencies of these results were 

also discussed. 
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8 SIMULATION 

In this chapter, we apply the results derived in preceding chapters to several control-

affine systems. These include a unicycle-type vehicle model and a car-like vehicle model. 

We show that our quantized control law not only leads to desired stability results, but 

also reduces the interaction between the controller and the plant. 

8.1 Quantized Control for a Unicycle-type Vehicle 

In this section we design a quantized control law to steer a unicycle-type vehicle. We 

are interested in quantized control of autonomous vehicles and mobile robots (quantized 

motion control) for several reasons. First, autonomous vehicles are subject to compu-

tational complexity, communication constraints, and real-time requirements; and the 

quantization-based approach is an effective way to reduce the interaction between the 

controller and the system. Second, we would like to understand the intrinsic difficulty of 

controlling (steering) a vehicle in an obstacle-free space. We will see that quantized con-

trol leads to a natural behavior using a finite number of simple control primitives. While 

illustrating the idea of quantized control, we will not consider the issue of nonholonomy 

(many autonomous vehicles are subject to nonholonomic constraints; cf. [40, 28]); we 

simply remove nonholonomic constraints by setting some inputs constant [39]. 

Following [20], we use trim trajectories as the control primitives. Roughly speaking, 

for a unicycle-type vehicle in a plane, trim trajectories are obtained by steering the 

vehicle with constant linear velocities and angular velocities. The set of trim trajectories 

contains the straight line and all circle arcs with different radii. Each trim trajectory is 

corresponding to one constant control input, and all these constant control inputs form a 
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set T. By Quantized motion control we mean the admissible control inputs are restricted 

to an at most countable set Tc, subset of T. Between two switchings, the quantizer holds 

the control input, and this constant input steers the vehicle to move along some trim 

trajectory until at the next switching time the quantizer selects another control input 

from Tc. In this paper Tc is generated by a given CLF. An additional advantage of 

the Lyapunov-based approach is that it does not require identification of the control 

primitives beforehand. 

8.1.1 Model of a Unicycle-type Vehicle 

The kinematics of a unicycle-type vehicle in a 2-D plane can be modeled as follows: 

X1 = -U1 COS X3 

i2 = u1 sinx3 

X3 = U2 

(8.1) 

where x 3 is the steering angle, u 1 is the linear velocity, and u2 is the steering angular 

velocity. 1/u2 is the radius of the turn made by the vehicle. As mentioned before, we set 

u1 constant to make the system holonomic. We denote u = u2 and let u 1 = 1 without 

loss of generality. The above equations are rewritten as 

X1 = -COSX3 

X2=SlnX3 

i 3 = u. 

(8.2) 

We focus on two tasks of motion control in an obstacle-free plane: 1) line tracking: 

the vehicle is required to go along a straight line; and 2) position control: the desired 

state is a fixed position in the plane. 

8.1.2 Quantized Line Tracking 

We consider the problem that system (8.2) is required to track the x 1 axis in the 

x 1-x2 plane and point due west (left). (Note that we can always choose the desired path 

as the x 1 axis; therefore, the quantizer design method can be used to track any straight 
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Figure 8.1 Kinematic model of a unicycle-type vehicle. x 3 E (-n, n] is 
the angle between heading direction and the x 1 axis (west), 
d2 = xi+x~, B = atan2(x2,x1), and {3 = X3+B (±2n) E (-n,n]. 

line in the plane.) Since there is no requirement on x 1 , we focus only on the dynamics 

of x2 and X3: 

(8.3) 
X3 = U. 

Once x2 and x 3 are stabilized, the vehicle will be running along the desired trajectory. 

System (8.3) is locally linearizable and the linearization is stabilizable, so it admits 

an RCLF. It is easily verified that V = x~ + x~ + x 2 x3 is an RCLF for the dynamics of X2 

and x 3 . One way to verify this is to apply Lemma 3.3, which gives us a~= a~= 3/4. 

The other way is to first show that V is a CLF for the linearized system, and then show 

V is a CLF for system (8.3). (This can be done easily since we only need to verify 

L9 V = 0 implies LtV < 0 if x-=/=- 0). 

We can furthermore verify that in any neighborhood of the origin, there is some 

(x2,x3) such that LtV(x) > 0. Thus Propositions 5.1and5.3 are applicable. 

Quantizer Design 8.1. System (8.3} can be robustly stabilized by an LQ. Level 0 

partition is given by flz ={xi sinx3(2x2+x3) < -5(x~+x~)} and flNz ={xi sinx3(2x2+ 

x 3) ~ -5(x~+x~)} for some 5 > 0. flNz is logarithmically partitioned by p(x) = x 2 +2x3 

(Level 1 partition}. Finite truncation of this quantizer is stabilizing. 

Figure 8.2 is a sample trajectory using the quantizer given above. The vehicle is 

running in the xi-x2 plane. A 2-level quantization is defined on the xrx3 plane. The 
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dashed line is the desired trajectory in the x 1-x2 plane. The trajectory has been plotted in 

the x 1-x2-x3 space, as well as projections in the x1-x2 and xrx3 planes. Stars represent 

the switching points. We can see from the figure that the vehicle follows a natural 

trajectory to reach the desired trajectory and then goes along it. Interaction between 

the quantizer and the vehicle exists only at the star points. 

Figure 8.2 A sample trajectory of the vehicle's line tracking. 

In Figure 8.3, a comparison is made between two quantizers with different densities. 

In A, a denser quantizer is used, and 5 bits are needed to represent the necessary control 

primitives that steer the vehicle to the desired trajectory with high precision, whereas 

in C only 3 bits are used. We find that A has faster switchings than C. Thus A has 

more interaction between the quantizer and the vehicle. We also observe a smaller 

overshoot and faster convergence in A. There is a trade-off between better performance 

and less interaction. So, in practical use, it is important to choose a suitable quantizer 

to achieve the desired control specifications while using minimal control effort. This may 

be formulated as the problem of "minimum attention quantization" that attempts to 

find the balance between performance and the difficulty involved in implementing the 

control, as introduced in [7]. 
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Figure 8.3 Sample trajectories and control signals for the line tracking of 
a unicycle. A is the trajectory using a denser quantizer, and 
B shows its input; C is the trajectory using a coarser quantizer 
with the same initial conditions, and D shows its input. 

8.1.3 Quantized Position Control 

In this subsection we consider the problem that the origin of the x 1-x2 plane is the 

desired destination. Now we need to drive x1 and x2 to zero, and there is no requirement 

on x 3 . Since the origin of the x 1-x2 plane is no longer an equilibrium point of the system 

when we assume constant linear velocity, there exists no real CLF. To find a Lyapunov-

like function, which is a CLF for part of the dynamics, it is helpful to change (8.2) to 

the following form [1]: 
d = - cos/3 

/3 = j sin /3 + u 
(8.4) 

where d = J xi + x~ is the distance between the vehicle and the destination, and f3 = 
X3 + B ( ±27r) E ( -7f, 7f] is the deviation angle between the heading direction and the 

destination, where e = atan2(x2, X1). The dynamics X3 = u does not appear in (8.4) 

since it does not influence the dynamics of d and /3 and we do not have any requirement 

on x 3 . Let us assume at the start d-=/=- 0. Now we can find a CLF for the second equation 

in (8.4), and /3 can be driven to zero if d-=/=- 0. So we can apply the results of Chapter 6 
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to design a quantizer. To illustrate how to design a finite quantizer, we use Proposition 

6.3 here. 

Quantizer Design 8.2. Given any d* > 0. The trajectory of system (8.4) will converge 

to the set D* = {did < d*} by applying a hierarchical quantizer. Let k be any integer, 

s > 2, p = s - l - Js(s-2) < 1, D 1 ={did 2: d*//-1}, and Di= {dld*/pk-i+l > 
d 2: d* //-i} for i = 2, 3, ... , k. Level 1 quantization is a finite p- based logarithmic 

partition along the d axis by disjoint sets {Di }f=1 and D*. Level 2 quantization is given 

by defining a finite p-based logarithmic quantizer qi on each Di by partitioning Di along 

the (3 axis, and using aLi = 2P1*-i and at = 2aLd s for quantizer qi. 

The generation of the control input by quantized information of d and (3 is illustrated 

in Figure 8.4. In this figure, lD; ( d) denotes the indicator function: if d E Di then it takes 

value 1; otherwise it takes value 0. Since we let all partitions have the same base p, we 

can reduce the data to be stored and simplify calculation. (We only need to store d*, k, 

and s in memory, and all other quantities can be computed through simple computation; 

here u = qk(j) = -l+Vl-2/s r).) 
ak 

Level 1 partition 
x= ( d, (3) d k 

k =:Li· lDi(d) 

if (3 E Oj u 
(3 then u = Qk (j) 

Level 2 partition 

Figure 8.4 The hierarchical structure to generate u based on quantized in-
formation of d and (3. 

The justification of this quantizer design is simple. Let V = (32 . Then on the 

compact set K = {(d,f3)1d E [d*/l-i,dM],(3 E [-7r,7r]} for any dM > d*/pk-i, we have 
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aXt = 2J-i. The result follows. 

An interesting result is that by using quantization we can simultaneously control 

more than one vehicle using one quantized controller. Fig 8.5 shows sample trajectories 

for the motion of three unicycles. The initial headings are all due north. The figure 

also shows the quantized control signals. During this process, interaction between the 

quantizer and a vehicle is coarsely distributed along the time axis , and the probability 

that multiple vehicles need interaction at exactly the same time is very small (if the 

vehicles are not started at the same time). 

90 

120 

7 

u 

210 

· . . ·· : :v. · .. 

... :· ... ,\ ' .. > 
·· .. : ~ 3 \ 

·· ..... ... : ... . •\ 330 

240 300 

270 

Figure 8.5 Sample trajectories and control signals for the position control 
of three unicycles. 

8.2 Quantized Control for a Car-like Vehicle 

8.2.1 Model of a Car-like Vehicle 

The kinematics of a car-like vehicle are modeled as follows: 

i3=tu1tan¢ 

¢ = U2 

(8.5) 
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where x1 , x2 , u 1 , and u2 are the same as in the unicycle-type vehicle, x 3 E (-7r, 7r] is 

the angle of the vehicle's heading measured from the east, </> E ( - ~, ~) is the steering 

wheel angle relative to the vehicle body, and l is the length between the center of the 

front wheels and the center of the back wheels. We set l = 1 for simplicity. As before, 

we set u1 = 1 and let u = u2. The above equations are rewritten as 

X1 = COSX3 

i 3 =tan</> 

</> = u. 

d 

Figure 8.6 Kinematic model of a car-like vehicle. 

8.2.2 Quantized Line Tracking 

(8.6) 

In this subsection, we suppose that system (8.6) is required to track the x 1 axis and 

point due east. Since there is no requirement on x 1 , we can consider the following model: 

X3 =tan</> 

</> = u. 

(8.7) 

We need to stabilize x2, x 3 and </>. To find a CLF, we use back-stepping. For the 

dynamics of x2 and X3, let Vi = x~+x~+x2x3; then V1 =sin x3(2x2+x3)+tan </>(2x3+x2). 

V1 can be made negative by choosing tan</>= -2 sin X3 - X2 - 2x3. 
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Let V = Vi+ ( </> + arctan(2 sin x 3 + x2 + 2x3) )2 . Then L9 V = 2( </> + arctan(2 sin x 3 + 
2 )) d L V v;. L 9 V(2cosx3 tan¢+sinx3+tan¢) nr 'f th t V · · d d 

X2 + X3 , an J = 1 + l+(2 sinx3+x2+ 2x3)2 . vve can ven y a 1s 1n ee 

a CLF, and moreover, an RCLF. Direct calculation shows that alt = 0.0116. Thus we 

can design a quantizer based on Proposition A. l. 

Quantizer Design 8.3. System (8. 7) is robustly stabilized by a p-based SLQ with p = 
1-yl-a2 /a2 1 V 2 J M, p(x) = 2(</> + arctan(2sinx3 + X2 + 2x3)), uo = -2 2(1- a 2/aM - l)ro, 
H 1-a2 / aJw. °' 
and 0 < a 2 <alt = 0.0116. 

In Figure 8.7, we choose a 2 = 0.01, and the vehicle starts from x1 = 0, x2 = 2. 

The initial posture is given by x 3 = 2.1 (northwest), and</>= 1, so the front wheels are 

pointing west. A shows the desired path (the dashed line) in the x1-x2 plane. B shows 

the control input, and C shows the values of x 3 and </>. We see that the vehicle follows 

a natural trajectory to reach the x1 axis (with some overshoot), and then goes along it. 

The interaction between the quantizer and the vehicle is coarsely distributed along the 

time axis. 

A 

··lm-~ : • mm~ 
-5 0 5 x 10 15 20 25 

1 B 

Figure 8. 7 Sample trajectory for the motion of a car-like vehicle. 
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8.2.3 Quantized Position Control 

In this subsection, we suppose that system (8.6) is required to reach the origin of the 

x1 -x2 plane. We get 
d = - cos(3 

~ = ~ sin (3 - tan ¢ 

¢=u. 

(8.8) 

by following the same procedure and coordinate transformation as in the last section, 

with the exception that the deviation angle (3 is now given by (3 = e - x 3 ±Jr. 
The quantized position control of a car-like vehicle can be obtained by using the same 

approach as described before. We can use back-stepping to find a CLF, and (3 and ¢ can 

be driven to zero. Let Vi = (3 2 ; V1 can be made negative by choosing tan¢ = ~ sin (3. 

Then the smooth CLF for (8.8) is given by 

V =Vi+(¢- arctan(~sin(3)) 2 . 

So we have 

L9 V = 2( ¢ - arctan( ~sin (3)) 

and 

2 cos (3 . sin 2(3 
L1V = (2(3- L 9V d(l + (~ sin(3)2))(sm(3/d - tan¢) - L 9V d2 (l + (~ sin(3)2). 

With this CLF, we can apply the results of Chapter 6 to design a quantizer. We skip 

the quantizer design procedure here since it resembles the quantizer obtained in Section 

8.1.3. We present only the simulation results here. 

Figure 8.8 shows sample trajectories for the motion of a car-like vehicle. The initial 

positions of trajectories A, B, and C are x 1 = 20-/2, x 2 = 20-/2. The initial postures 

are given by X3A = 37r /4, ¢A = -0.1; X3B = 7r /4, ¢s = -0.5; X3c = 7r /5, ¢c = 0.3. We 

let d* = 0.2, so the vehicle will reach a neighborhood of the destination with radius 0.2. 

As we see from the figure, the vehicle is steered to the required neighborhood. 
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Figure 8.8 Sample trajectories for the motion of a car-like vehicle in polar 
coordinates. 

8.3 Summary 

In this chapter, we have presented several simulation results by applying the quan-

tized control scheme established in preceding chapters. We have shown that for two 

types of simple vehicles, we can design a quantized control law so that the systems 

achieve the desired control objectives. The interaction between the quantizers and the 

vehicles is much reduced compared with traditional control schemes (control schemes 

that are not based on quantization). 
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9 CONCLUSIONS AND FUTURE RESEARCH 

9.1 Conclusions 

In the past few years, considerable efforts have been devoted to the study of quantized 

control systems, due to their theoretical and practical importance in the study of hybrid 

control systems, control under communication/computation constraints, the interaction 

between control and information, etc. 

Recent papers [16, 13] establish quantized stabilization theory for single-input linear 

systems. This thesis is a direct extension of these results to single-input nonlinear affine 

systems. 

First, we have shown that a single-input nonlinear affine system can be robustly sta-

bilized by quantized feedback if it admits an RCLF. These robustly stabilizing quantizers 

have been explicitly constructed. Moreover, for a given RCLP, the coarsest robustly sta-

bilizing quantizer has been shown to be essentially semi-logarithmic. Several important 

classes of control-affine systems, such as linear systems, feedback linearizable systems, 

and locally feedback linearizable systems have been shown to admit RCLF's, and their 

quantization has been examined. 

Second, we have investigated the stabilizing quantizer for a single-input nonlinear 

affine system that admits a CLF. The designed quantizers in the closed-loop can be 

viewed as hierarchical hybrid automata. The quantized control strategy leads to a 

general control architecture for all single-input nonlinear affine systems with CLF's. 

Furthermore, we have shown that the quantization-based control architecture is help-

ful in reducing the interaction between the controller and the system being controlled. 

We have also discussed how to eliminate chattering in a quantized control system. We 
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have also derived preliminary results on quantization for partially feedback linearizable 

systems. 

Finally, we have applied our theoretical results to seven1 control system models. We 

have designed quantized controllers for two types of simple vehicles and achieved the 

desired control results. 

To summarize, we have established results on quantized stabilization of nonlinear 

affine systems. Sufficient conditions that ensure the exist,ence of quantized (robustly) 

stabilizing control have been found, the coarsest quantizers under certain conditions 

have been characterized, and a variety of quantizers have been constructed explicitly. 

Simulations demonstrated the advantages of the quantized control scheme. 

9.2 Future Research 

Research will continue on the following aspects: 

1. An efficient way to solve the optimization problem of CY~ in Lemma 3.3. We 

have seen that RCLF's are crucial in deriving "nice" quantizers. The problem 

of determining whether a CLF is an RCLF, and the problem of finding a suitable 

robustness level CY depend heavily on this optimization problem. For linear systems, 

the problem is solved completely; however, for nonlinear systems, this is still an 

open problem. 

2. Quantized stabilization of multi-input systems. Although the approach in this 

thesis extends to multi-input systems (which the reader can verify), the resulting 

quantizers are not in general the coarsest. In fact, multi-input systems involve 

much more complication than single-input systems, as is shown in [14] for two-

input linear systems. 

3. Conditions that guarantee the existence of stabilizing quantizers. We show in this 

thesis that, if a control-affine system admits a stabilizing regular feedback, then 

it admits a stabilizing quantized feedback. Some natural questions arise: Can 



www.manaraa.com

66 

quantized feedback stabilize systems that regular feedback cannot stabilize? What 

are the conditions that guarantee the existence of quantized stabilizing feedback? 

Is "asymptotic controllability" equivalent to "quantized stabilizability"? In what 

sense should the solutions to quantized dynamics systems be interpreted? 

4. Quantized performance. Quantization may lead to degeneration of performance; 

therefore, we need to investigate the balance between less control effort and the 

performance of the system, as is done in [7]. 

5. Control under communication/ computation constraints. In this thesis, these con-

straints are not considered explicitly. It would be interesting to extend previous 

results (e.g. [52, 44]) on linear systems to nonlinear affine systems. 
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APPENDIX A PROOFS OF RESULTS IN SECTION 5.1 

First, we can easily show that if a robustly stabilizing quantizer is not symmetric 

in the p( x) - u plane, then there exists a symmetric robustly stabilizing quantizer with 

the same density. (This can be done by symmetrically mapping one half of the graph 

into another half; we skip the details here.) Therefore, we can consider only symmetric 

quantizers for simplicity and without loss of generality. 

Second, we can show that the choice of /o is immaterial in considering robust stabi-

lization problem (see Remark 3.1). Let r = {r0 pi, i E Z}. The next lemma says that if 

for some SLQ q E Qa(V) with 1 E r, then there exists some ESLQ q1 E Qa(V) with 

/3 E r for any /3 > 0, and q1 has the same density as q. 

Lemma A.1. Suppose (q, S,D,U) with 1 Er is a p-based SLQ in Qa(V). Then for any 

given /3 > 0, there exists a p-based ESLQ q1 E Qa(V) with /3 E r, and q1 has the same 

partition function as q. 

Proof. From Lemma 3.3, we know that for any given weight 0 < a 2 <a~, there must 

exist some u for each x E S \ {O}, such that (3.10) holds; i.e., 

(A.1) 

Let Ua be the set of pairs (x, u) such that (A.1) holds; i.e., Ua = { (x, u)Ja2u2 + 
L9Vu + L1V < 0, x ES, x #- O}. Direct calculation shows that the boundaries of Ua are 

u(l),(2l(x) = 2~2 (-L9V(x) ± V(L9V(x)) 2 -4a2L1V(x) ). (A.2) 

Since every point between the two boundaries u(l),(2l(x) can be such that (3.10) holds, 

we know Ua can be characterized by its two boundaries. Therefore, (x, u) is such that 

(3.10) holds if and only if u is between the two boundaries u(l),(2l(x). 
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Suppose the partition function is p( x). For any Ui E u and any x E nt) the pair 

(x, ui) is in cl(U0J Therefore, for all x such p(x) = pi+1 (i.e., x on the boundary of 0£ 

and S1{+1), we have (x, ui) E cl(Ua) and (x, ui+l) E cl(Ua), which implies 

ui+1 uC1l(x) 
p=-> . ui - uC2l(x) 

Direct calculation shows that the above equation is equivalent to 

a2 c. 
h(x) > = r - 1 - (b'.)2 l+p 

for all x such that p(x) = pi+1 . Let ll.(y) = infp(x)=yh(x). Then in any small neighbor-

hood of 0 we have fl.(y) 2 r for some y > 0. 

Note that to show the existence of the ESLQ q1 , we only need to show the existence 

of a p-based SLQ q2 E Qa(V) with /3 Er in a small neighborhood of the origin. Suppose 

such a q2 does not exist; i.e., any p-based SLQ q2 with /3 E r is not in Qa(V). Hence, 

in any small neighborhood of the origin, there exists some x such that 

ui+l u(1l(x) 
p=-<--

Ui u(2l(x)' 

which means in any small neighborhood of 0 we have fl.(y) < r for some y > 0. 

However, in a small enough neighborhood N of 0, function ll.(y) is monotonic or 

constant. In fact, on N we know h(.Ax) is a monotonic or constant function of).., where 

).. > 0. Thus, it is impossible that ll(p(x)) achieves its minimum (or maximum) at some 

x in the interior of N\ {O}; otherwise the minimum (or maximum) could be made smaller 

(or larger) by scaling x. Thus, ll.(y) is monotonic or constant, which makes it impossible 

that in any small neighborhood of 0, we have ll.(y) < r for some y > 0 and ll.(y) 2 r 

for some other y > 0. So, there must exist a p-based SLQ q2 E Qa(V) with /3 E r in a 

small neighborhood of the origin. D 

Now we prove a proposition which constructs the coarsest SLQ q E Qa(V). 

Proposition A.1. Suppose (V(x), a) is an RCLP for system (3.1) on S, and a~ 

a~. System (3.1) can be robustly stabilized to the origin by a Pc-based semi-logarithmic 

quantizer qc on S with the partition function p( x) = Lg V ( x), Pc = kic/ k2c < 1, kic = 
-l+jl-a2/aL- -1-J1-a2/aL- . . ( ) 

2°'2 , k2c = 2°'2 , and Uo = kic/O· qc is the coarsest SLQ in Qa V . 
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Proof. Let Ua = {(x,u)la2u 2 + L 9Vu + L1V < O,x E S,x =/= O}. The boundaries of 

Ua are given by equation A.2. We know that any function that lies between the two 

boundaries is a candidate for robustly stabilizing feedback. We want to find an SLQ 

lying between the boundaries. Such an SLQ is characterized as follows. 

Claim: Let 

(A.3) 

and Ua = {(x,u)luP)(x) > u > uP)(x)}. Then Ua ~ Ua, and Ua totally contains any 

semi-logarithmic quantization in the set Ua. 

Proof of Claim: The first part of the proof of the claim is done by direct verification. 

For the second part, we only need to show that the coarsest SLQ in the set U a is 

inside Ua. By Lemma A.1 and the assumption a~ = a~, we know that an SLQ is 

in Ua if and only if its triggering manifolds are in Ua. Let us assume that the two 

triggering manifolds of the coarsest SLQ q are c1p(x) and c2p(x), where p(x) is some 

smooth function, and c1, c2 are constants. Since lu(l) - -2: 92v I = lu(2) - -2:~v I, we have 

[c1p(x)- -2Lc;{[ = [c2p(x)- -2i;2v[; otherwise the two triggering manifolds could be made 

closer to u(l),(2), which contradicts the fact that q is the coarsest. So 

(A.4) 

Then direct calculation shows that c1p(x) = klcL9 V and c2p(x) = k2cL9V, where k1c 

and k1c are defined as in the hypothesis of Proposition A.1. This proves the claim. V 

By virtue of the claim, we can do quantization for system (3.1). For the compact set 

S ~ X containing the origin, we know x =/= 0 implies a 2q; + L9 V qc +Lt V < 0. Then 

according to Lemma 3.5, qc is a robustly stabilizing quantizer on S, and it is the coarsest 

semi-logarithmic one in Qa(V). D 

The above proposition gives us the coarsest SLQ for a given RCLP. The next lemma 

helps us to characterize the coarsest quantizer for a given RCLP. 

Lemma A.2. Let the RCLP (V(x), a) and the SLQ qc be given as in Proposition A.1, 

and a~= a~. Then qc E arg infgEQa(V)77g· 
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Proof. We can first show that, for any quantizer q E Qa(V), it holds that for each i E Z, 

there exists some x such that 
ui+1 > u(1l(x) 
ui - u(2l(x) · 

Otherwise, suppose for some i it holds that 

ui+l < u(1l(x) 
ui u(2l(x) 

for all x, then it implies that there must exist some x such that for all u ;:::: ui, we have 

and for all u ~ Ui+i, we have 

This leads to contradiction. 

Then we can show that 
Ui+l > ~ -- - Pc - e 7Jqc 

_ _L 

Ui 

for all i. This is easily shown by noticing 

u(ll(x) kic 
sup (2) ( ) = -k . 

x U X 2c 

Therefore, we know that all density smaller 'T/c is not achievable. D 

Now we prove Proposition 5.1 using the results we just showed. 

Proof of Proposition 5.1 

Proof. Suppose there is some a > 0 such that a~ ~ h(x) for all x in Sia = {x E 

SJIV(x) ~a}. Let Sa= {x E SIV(x) ~a}. Define a~a = infxESJa h(x). It is easy to 

see that a~a =a~. 

By Proposition A.1, we know that on the compact set Sa, the coarsest SLQ qc E 

Qa(V) is given as p(x) = L 9V(x), Pc = kic/k2c < 1, kic = -1+J~:~2 /aira, k2c = 
-i-J~:~21°'ira, and u 0 = kic"fo, which is in fact the semi-logarithmic part of the ESLQ 

defined in Proposition 5.1. The finite number of cells on S \Sa drive the state from 

S \ Sa into Sa, as ensured by Proposition 5.3. Because qc and q* differ only on a finite 

number of cells, we know they have the same density. D 
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Proof of Proposition 5.2 

1 2 
Proof. For the given E > 0, let 7]€ = 'fJ* + E, p€ = e-'h, a; 1-(~)2' sf€ = {x E 

l+p. 

Sflh(x) > a;}, and S€ be the smallest closed invariant set of V(x) containing Sf€· 

Define a~€= infxESJ• h(x). It is easy to see that a~E =a;. 
By Proposition A.1, we know that on the compact set SE, the coarsest SLQ qc E 

. . -1+y'1-0:2/o:2 
Qo:(V) IS given as p(x) = LgV(x), Pc = kic/k2c < 1, kic = 20:2 M•, k2c = 

-i-J~::2 /o:it,, and u0 = kic"(o, which is in fact the semi-logarithmic part of the ESLQ 

defined in the hypothesis of Proposition 5.2. Because qc and qE differ only on a finite 

number of cells, we know they have the same density. D 

Proof of Lemma 5.1 

Proof. First we show that the condition is sufficient. Suppose there is some a > 0 such 

that a~ :::; h(x) for all x in Sfa = {x E SflV(x) :::; a}. By Proposition 5.1, we know 'fJ* 

is an achieved density of robustly stabilizing quantizers. So q* E Qo:(V). 

Next we show that the condition is also necessary. We prove by contradiction. Sup-

pose for any a> 0, there exists some x in Sfa = {x E SflV(x):::; a} such that a~> h(x), 

but q* E Qo:(V). By a reasoning similar to that in the proof of Lemma A.1, we know 

q* E Qo:(V) implies that 
a2 

h(x) > - a 2 
- 1 - (l=.e)2 - s 

l+p 

for all x E Sf such that LgV(x) = pi for all i. Let !J.(y) = infLgV(x)=y h(x). Then in 

any small neighborhood of 0 it holds !J.(y) ~a~ for some y > 0. However, in any small 

neighborhood of 0 it holds also that a~ > h(x) for some x, and hence !J.(y) < a~ for 

some y > 0, which is a contradiction. D 

Proof of Theorem 5.1 

Proof. By Proposition 5.2 and Lemma A.2, we know 'f}* is the infimum of the density 

of robustly stabilizing quantizers. The case of a~ = +oo is actually the limiting case of 

a~< +oo. D 
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APPENDIX B PROOFS OF RESULTS IN SECTION 5.3 

Proof of Lemma 5.2 

Proof. First we show ()2 = B' PQ-1 PB > 1. Notice (} is the singular value of B' PQ-!, 

so the SVD (Singular Value Decomposition) for B' PQ-! has the following form: 

where S1 = 1 E IR, I:=[(}, 0, ... , OJ E IR1xn, S2 E IRnxn and S~S2 =I. 

So 

which yields 

S2I:'I:S~ 

= Q-!PBB'PQ-! 

= Q-!(PA+A'P+Q)Q-!, 

PA+A'P 

= Q! S2I:'I:S~Q! - Q 
= Q! S2(I:'I: - I)S~Q! 

= Q!S2diag((J2 -1, -1, ... , -l)S~Q!. 

(B.1) 

(B.2) 

By the result of classification of CLF's (refer to [15]), we know that if A is not 

Hurwitz, A' P +PA has one and only one positive eigenvalue, which implies that diagonal 

matrix diag((J2 - 1, -1, ... , -1) has one positive eigenvalue. Therefore, () 2 > 1. 

On the set {xlL1V(x) > O,x E IRn}, we have 

(L9 V) 2 

4L1V 
x'PBB'Px 

-x'(A'P+PA)x 
1 

- x 1(A 1P+PA)x 0 

x1PBB1Px 

(B.3) 
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Notice that A' P +PA - P BB' P = -Q, so we know the above equals 

1 
x' P BB' Px-x 1Qx 

x 1PBB1Px 

1 
- l- x 1Qx 

x 1PBB1Px 

x'Qx 
So we need to calculate inf p BB p This is equivalent to solving 

X X 1 I X 

Note that 

max t. 
x 1Qx > \-I 

x 1 PBB1 Px _t,vx 

x'Qx > t 
x'PBB'Px -

B Q;:::: tPBB'P 

B tI;:::: Q-!PBB'PQ-! 

B t;:::: B'PQ-!Q-!PB. 

(B.4) 

(B.5) 

(B.6) 

So the optimal solution of (B.5) is }2 • Note that a~ = o:L since h(x) is invariant 

w.r.t. scaling. Then the result follows. D 

Proof of Proposition 5.4 

Proof. The proof is straightforward given Lemma 5.2. D 

Proof of Proposition 5.5 

Proof. Since VM = 1 and V = x' Px, we have DV = Px and hence 

for any x in S; i.e., 

x'P2x::=;l foranyx s.t. x'x::=;l. (B.7) 

Using the S-procedure (see [3]), (B.7) is equivalent to P::::; I. 
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Therefore, for the given robustness level a, the searching of the coarsest quantizer is 

equivalent to the following optimization problem: 

inf CJ2 

s.t. CJ2 = B' PQ-1 PB 

O<P~I 

=inf CJ2 

s.t. CJ2 ?. B' PQ-1 PB 

0 < P ~I 

(B.8) 

Noticing CJ 2 ?. B' PQ-1 PB if and only if CJ 2 Q ?. P BB' P (similar to the reasoning in 

equation (B.6)), we know the above optimization problem is equivalent to 

inf CJ2 

s.t. CJ2Q ?. P BB' P 

0 < P ~I 

=inf CJ2 

s.t. A'P +PA- (1- }2 )PBB'P < 0 

0 < P ~I 

=inf / 

s.t. RA'+ AR - 1BB' < O 

R?. I 

I< 1 

where/= (1- }2 ), and RP= I. 

(B.9) 

D 
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APPENDIX C PROOFS OF RESULTS IN SECTION 5.4 

Firstly, we present two ways to prove Lemma 5.3. The first one, although lengthy, 

is helpful to address partially feedback linearizable systems; the second one is concise 

and relies on the results in [26]. Then we show Proposition 5.6 is a direct result of the 

lemma. 

Proof 1 of Lemma 5.3 

Proof. (a) First we can show V is a CLF on S for system (5.6). For affine system 

x = f(x) + g(x)u we only need to show that, if LgV = 0 and x-/= 0, then L1V < 0. 

Here we have LgV(x) = 2{3-1(x)B'Px, and L1V(x) = x'(A'P+PA)x-1(x)LgV(x). So 

Lg V(x) = 0 if and only if B' Px = 0. V is a CLF for the linear system x = Ax+ Bu, 

so B'Px = 0 implies x'(A'P + PA)x < 0. Therefore LgV(x) = 0 and x-/= 0 implies 

L1V(x) < 0. 

Now we show that V is an RCLF on S; that is, for some a 2 > 0, there is some Ux 

such that for each 0-/= x E S, we have 

a 2u; + 2{3-1 (x)B' Pxux + x'(A' P + PA)x - 21(x){3-1(x)B 1 Px < 0. (C.1) 

By the previous result, we know V is an RCLF if and only if 

If L1V > 0, then 

CY~= inf 
xES 

LfV > O 

(Lg V)2 > 0. 
4L1V 

x'(A' P + P A)x - 1(x)Lg V(x) 

= x'(PBB'P- Q)x -1(x)LgV(x) 

> 0. 

(C.2) 

(C.3) 
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Sox' P BB' Px > x'Qx + 1(x)L9 V(x), and it yields that 

x'Qx + 1(x)L9 V(x) 1 
x'PBB'Px < . 

We can furthermore show that there exists an M > 0 such that 

x'Qx + 1(x)L9 V(x) > -M· 
x'PBB'Px - ' 

(C.4) 

that is, the fraction is bounded from below. Notice x'PBB'Px =/:- 0 if LtV > 0, so we 

only need to show there exist an M > 0 such that 

x'Qx + 21(x)/3-1(x)B'Px + Mx'PBB'Px 2:: 0. (C.5) 

By smoothness of 1(x)j3-1(x), and because 1(0)/3-1 (0) = 0, the Mean Value Theorem 

implies that there is some x 0 E S such that 

(C.6) 

where H(x) : S -E JR.n is the gradient of the LHS function. So (C.5) is equivalent to 

x'Qx + H'(x0 )xB'Px + Mx'PBB'Px 2:: 0, (C.7) 

which is 

x'(Q + (H(x0 ) + MPB)B'P)x 2:: 0. (C.8) 

Suppose H(xo) = (h1(xo), h2(xo), ... , hn(xo))'. Each component in H(xo) takes a 

finite value over the compact set S, so for each scalar function Jhi(x0)J we can find 

its supremum over S, say, hi· Assume without loss of generality that (A, B) is in 

controllable canonical form, so B = (0,0,. . .,0, 1)'. Assume P = {Pii}· Then B'P = 

If Pin = 0 for some i, then Mp~n + Pinhi(x) = 0 for any M. Next, choose M such 

that M > _!!LI h· 1 for all i such that Pin =/:- 0, so we have 
Pm 

Mptn + Pinhi(xo) 

2:: M Ptn - I Pin J hi 

2:: (MIPinl - hi)IPinl 

> 0. 

(C.9) 
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In both cases we conclude that there is an M > 0 such that M PTn +Pin hi ( x) 2:: 0 for 

all i. 

Therefore we have 

B' P(H(xo) +MP B) 

= (P1n,P2n, ... ,Pnn)(h1(xo) + Mp1n, h2(xo) + MP2n, · ·., hn(xo) + MPnn)' 

= (MPin + P1nh1(xo)) + (Mp~n + P2nhn(xo)) + · · · + (Mp;n + Pnnhn(xo)) 

> 0. 

(C.10) 

Note that ">" holds here because P >-- 0 (P being positive definite) and hence 

Pnn > 0. 

The only possible nonzero eigenvalue of matrix fI = (H(x 0 ) +MP B)B' Pis 

B' P(H(x0 ) +MP B), so fI C: 0 (fl being positive semi-definite). Thus (C.8) holds and 

consequently (C.4) holds. 

Since 

we have 

and thus o:i:r > 0. 

(L 9 V) 2 _ 2 1 
4Lj V = /3 (x) 1 _ x'Qx+f'(x)L9V(x)' 

x'PBB'Px 

(b) By (a), we know the o:~ for the QCLF V is positive. It is easily verified that 

adding the higher order term Vh to V does not change o:~, and hence Vs is an RCLF. D 

Proof 2 of Lemma 5.3 

Proof. Let J,, be the Jacobian matrix of 1(x) evaluated at x = O; i.e., J,, = ~~ lx=D· Let 

J be the Jacobian matrix of 13-1(x)r(x) evaluated at x = O; i.e., 

J = 8(,i3- 1 (x)'Y(x)) I ox x=O 
= a,6~:(x)r(x)lx=D + /3- 1 (x) 01~)1x=D (C.11) 

= 13-1(0)1,,. 
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Then we rewrite system (5.6) as follows: 

x =Ax+ B{3-1 (x)(u - 1(x)) 

=Ax - B{3-1(x)r(x) + B{3-1(x)u 

=Ax - BJx + B{3-1(0)u + (BJx - B{3-1(x)r(x)) + (B{3- 1(x) - B{3-1(0))u 
(C.12) 

where the last two terms of the last equality are higher order terms, and (A-BJ, B {3-1 ( 0)) 

is the Jacobian linearization of system (5.6). 

Let B = {3-1 (0)B, then 

(A - BJ, B{3-1(0)) 

=(A - B{3-1(0)J,, B{3-1 (0)) 

= (A - Bl-y, B). 

(C.13) 

By assumption we know V = x' Px is a CLF for (A, B), therefore V is a CLF for 

(A, B) (since {3-1(0) is a scalar), and hence Vis a CLF for (A- Bl-y, B). Because Vis 

a QCLF for system (5.6) and its Jacobian linearization, by Corollary 1 in [26], we know 

Vis an RCLF for system (5.6). D 

Proof of Proposition 5.6 

Proof. The proof is straightforward by using Lemma 5.3. D 
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APPENDIX D PROOFS OF RESULTS IN SECTION 7.3 

Proof of Lemma 7.2 

Proof. Suppose V(x) = x' Px is a quadratic RCLF for system (7.4); that is, there exists 

ai > 0 such that 

inf 
:z: ES 

L11 V > O 

(D.1) 

where Lfl = ~~A~+~~ q(~, 77), and £ 91 V = ~~ B. The above equation is equivalent to 

(av )2 2(av av ( )) fj[B > 4a1 a~ A~+ a77 q ~' 77 (D.2) 

for all 0 # (~, 77) E S. 

As a consequence, there exists a positive definite function Q(x) : S -t JR such that 

for all (~, 77) E S. 

For system (7.2), we have 

and 
av _1 ( ) L92V = a~ Bf3 ~' 77 . 

To show V(x) is an RCLF for (7.2), we need to show 

inf (L92 V) 2 O 
4L12V > . 

(D.3) 

(D.4) 
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Because f3(x) is nonsingular for all x in the compact set S, we need only to show 

there exists a 3 > 0 such that 

(~¥ B)2 
-=-=~~--=.,.---~~~~~~~~~~ > a~ 
~¥A~ - ~¥ B{3-1 (~, 77)r(~, 77) + ~~ q(~, 77) 

for all (~ 1 77) so that L12V > 0. 

Note that 

Therefore, to show equation (D.5), it is sufficient to show 

~Bf3-1 (x)r(x) + 1W 
(~¥ B)2 

(D.5) 

(D.6) 

(D.7) 

is bounded from below, which is true if there is some M > 0 such that for all x E S, 

Q(x) av _1 av 2 
4ai + 8{Bf3 (x)r(x) + M( 8{B) 2 0. 

Let B (B', 0, .. · , O)' E JRn. Then it is easy to check that ~¥ B 
equation (D.8) is equivalent to 

Q(~) + 21(x)fr1(x)B'Px + 4Mx'PBB'Px 2 0. 
40:1 

(D.8) 

2B'Px. So 

(D.9) 

However, (D.9) can be shown using the same techniques we used to prove equation 

(C.5) with minor modification. Therefore, the result follows. D 

Proof of Proposition 7 .1 

Proof. The proposition follows directly from the above lemma. D 

Proof of Lemma 7.3 
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Proof. Suppose V(x) is a CLF for system (7.2). Then V = L1V(x) + LgV(x)u, where 

av av _1 av 
L1V(x) = 0~ A~ - a[B/3 (~,TJh(~,TJ) + OTJ q(~,TJ) 

and 
( ) av _1 ) LgV x = 0~ B/3 (~,TJ. 

Since V is a CLF, we know that LgV(x) = 0, x =:/:- 0 implies that L1V(x) < 0. 

Notice f3- 1(x) =:/:- 0, so we have ~~ B = 0, x =:/:- 0 implies ~~A~+ ~~ q(~, TJ) < 0. This 

further implies that V(x) is a CLF for system (7.4). The proof for the other direction 

is similar. D 

Proof of Lemma 7.4 

Proof. Since q(~, TJ) is a smooth function, there is an (n - r) x r smooth matrix G(~, TJ) 

such that 

q(~, TJ) = q(O, TJ) + G(~, TJ)~ (D.10) 

for all(~, TJ). For instance, if we writer(..\) £ q(..\~, TJ), then from r(l) = r(O) + J0
1 r'(..\)d..\ 

we conclude that one choice is 

G(~, TJ) £ r1 8q(~, TJ) I d>.. 
lo a~ (>-~,rJ) 

(See [48] p244.) 

Since dd1:;' is smooth and dd1;;' lo = 0, the Mean Value Theorem implies that there exists 

some point 'T]o such that 
dW '( ) drJ =H TJo TJ, (D.11) 

where H(TJ) E IR.n-r is the gradient of the LHS function. 
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Consider V =(Pe+ c2W(77), c2 > 0. Using v = -~B'Pe, we have 

v =((A' P + P A)e + 2B' Pev + c2 dd~ q(e, 11) 

= -eQe + c2 d:; q(o, 11) + c2 d:; a(e, 11)e 

< -eQe - c2c1111111 2 + c211' H(11o)a(e, 11)e 

= -(Q!e - 3Q-!G'(e, 11)H'(110)11) 2 + ~11' H(11o)G(e, 11)G'(e, 11)H'(110)11 - c2c1ll11ll 2 

:::; -(Q!e - 3Q-!G'(e, 11)H'(110)11) 2 + ~c3ll11ll 2 - c2c1ll11ll 2 

:::; -(Q!e - 3Q-!a'(e, 11)H'(110)11) 2 . 

(D.12) 

Note c3 > 0 exists since H(170)G(e, 17)G'(e, 77)H1(770 ) can only take finite values, and 

the last inequality holds for sufficiently small c2 . Therefore, we know that if we choose 

a small enough c2, V < 0 for (e, 77) "I- 0. 0 

Proof of Lemma 7.5 

Proof. Since (Pe is a quadratic CLF for the linear system e = Ae +Ev, by Lemma 5.2 

it is also an RCLF; therefore, for some a > 0, there exists some control law v = v(e) 

such that 

(D.13) 

Since V1 is a CLF for system (7.4), and the same control law v = v(e) is stabilizing, 

we have 
dW 

t(A' p + PA)e + 2B' Pev + c d17 q(e, 77) < 0 

if ( e, 11) "I- o. 
Adding (D.13) and (D.14), we have 

dW 
a 2v2 +2e'(A'P+PA)e+4B'P(v+c d?'] q((,17) <0 

if (e, 77) "I- 0. So Vis an RCLF for system (7.4). 

(D.14) 

(D.15) 

D 
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